Best Trigonometric and Bilinear Approximations of Classes of Functions of Several Variables
Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 401-415.

Voir la notice de l'article provenant de la source Math-Net.Ru

Order-sharp estimates of the best orthogonal trigonometric approximations of the Nikolskii–Besov classes $B^{r}_{p,\theta}$ of periodic functions of several variables in the space $L_{q}$ are obtained. Also the orders of the best approximations of functions of $2d$ variables of the form $g(x,y)=f(x-y)$, $x,y\in \mathbb{T}^d=\prod_{j=1}^{d}[-\pi,\pi]$, $f(x)\in B^r_{p,\theta}$, by linear combinations of products of functions of $d$ variables are established.
Keywords: best trigonometric approximation of functions, best bilinear approximation of functions, Nikolskii–Besov class of periodic functions, the space $L_{q}$, Minkowski inequality.
Mots-clés : Fourier sum, Vallée-Poussin kernel
@article{MZM_2013_94_3_a7,
     author = {A. S. Romanyuk},
     title = {Best {Trigonometric} and {Bilinear} {Approximations} of {Classes} of {Functions} of {Several} {Variables}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {401--415},
     publisher = {mathdoc},
     volume = {94},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a7/}
}
TY  - JOUR
AU  - A. S. Romanyuk
TI  - Best Trigonometric and Bilinear Approximations of Classes of Functions of Several Variables
JO  - Matematičeskie zametki
PY  - 2013
SP  - 401
EP  - 415
VL  - 94
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a7/
LA  - ru
ID  - MZM_2013_94_3_a7
ER  - 
%0 Journal Article
%A A. S. Romanyuk
%T Best Trigonometric and Bilinear Approximations of Classes of Functions of Several Variables
%J Matematičeskie zametki
%D 2013
%P 401-415
%V 94
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a7/
%G ru
%F MZM_2013_94_3_a7
A. S. Romanyuk. Best Trigonometric and Bilinear Approximations of Classes of Functions of Several Variables. Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 401-415. http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a7/

[1] O. V. Besov, “O nekotorom semeistve funktsionalnykh prostranstv. Teoremy vlozheniya i prodolzheniya”, Dokl. AN SSSR, 126:6 (1959), 1163–1165 | MR | Zbl

[2] S. M. Nikolskii, “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Sbornik statei. Posvyaschaetsya akademiku Ivanu Matveevichu Vinogradovu k ego 60-letiyu, Tr. MIAN SSSR, 38, Izd-vo AN SSSR, M., 1951, 244–278 | MR | Zbl

[3] P. I. Lizorkin, “Obobschennye gelderovy prostranstva $B^{(r)}_{p,\theta}$ i ikh sootnoshenie s prostranstvami Soboleva $L^{(r)}_p$”, Sib. matem. zhurn., 9:5 (1968), 1127–1152 | MR | Zbl

[4] A. S. Romanyuk, “Priblizhenie klassov periodicheskikh funktsii mnogikh peremennykh”, Matem. zametki, 71:1 (2002), 109–121 | DOI | MR | Zbl

[5] A. S. Romanyuk, “Bilineinye i trigonometricheskie priblizheniya klassov Besova $B_{p,\theta}^r$ periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. matem., 70:2 (2006), 69–98 | DOI | MR | Zbl

[6] S. B. Stechkin, “Ob absolyutnoi skhodimosti ortogonalnykh ryadov”, Dokl. AN SSSR, 102:1 (1955), 37–40 | MR | Zbl

[7] A. S. Romanyuk, “Nailuchshie $M$-chlennye trigonometricheskie priblizheniya klassov Besova periodicheskikh funktsii mnogikh peremennykh”, Izv. RAN. Ser. matem., 67:2 (2003), 61–100 | DOI | MR | Zbl

[8] R. A. DeVore, V. N. Temlyakov, “Nonlinear approximation by trigonometric sums”, J. Fourier Anal. Appl., 2:1 (1995), 29–48 | DOI | MR | Zbl

[9] N. P. Korneichuk, Tochnye konstanty v teorii priblizheniya, Nauka, M., 1987 | MR | Zbl

[10] V. N. Temlyakov, “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN SSSR, 178, 1986, 3–113 | MR | Zbl

[11] V. N. Temlyakov, “Greedy algorithm and $m$-term trigonometric approximation”, Constr. Approx., 14:4 (1998), 569–587 | DOI | MR | Zbl

[12] E. Schmidt, “Zur Theorie der linearen und nichtlinearen Integralgleichungen”, Math. Ann., 63:4 (1907), 433–476 | DOI | MR | Zbl

[13] V. N. Temlyakov, “Bilineinaya approksimatsiya i prilozheniya”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 13, Sbornik rabot, Tr. MIAN SSSR, 187, Nauka, M., 1989, 191–215 | MR | Zbl

[14] V. N. Temlyakov, “Bilineinaya approksimatsiya i blizkie voprosy”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 14, Tr. MIAN SSSR, 194, Nauka, M., 1992, 229–248 | MR | Zbl

[15] V. N. Temlyakov, “Priblizhenie periodicheskikh funktsii mnogikh peremennykh kombinatsiyami funktsii, zavisyaschikh ot menshego chisla peremennykh”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 11, Sbornik rabot, Tr. MIAN SSSR, 173, 1986, 243–252 | MR | Zbl

[16] B. S. Kashin, A. A. Saakyan, Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl