Classes of Bianchi Equations of Third Order
Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 389-400.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of determining equations written out in terms of Laplace invariants, some classes of Bianchi equations of third order similar to well-known classes of hyperbolic equations with two independent variables are singled out.
Keywords: Bianchi equation of third order, hyperbolic equation, Lie algebra
Mots-clés : Laplace invariant, Euler–Poisson equation, Liouville equation.
@article{MZM_2013_94_3_a6,
     author = {A. N. Mironov},
     title = {Classes of {Bianchi} {Equations} of {Third} {Order}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {389--400},
     publisher = {mathdoc},
     volume = {94},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a6/}
}
TY  - JOUR
AU  - A. N. Mironov
TI  - Classes of Bianchi Equations of Third Order
JO  - Matematičeskie zametki
PY  - 2013
SP  - 389
EP  - 400
VL  - 94
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a6/
LA  - ru
ID  - MZM_2013_94_3_a6
ER  - 
%0 Journal Article
%A A. N. Mironov
%T Classes of Bianchi Equations of Third Order
%J Matematičeskie zametki
%D 2013
%P 389-400
%V 94
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a6/
%G ru
%F MZM_2013_94_3_a6
A. N. Mironov. Classes of Bianchi Equations of Third Order. Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 389-400. http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a6/

[1] M. K. Fage, “Zadacha Koshi dlya uravneniya Bianki”, Matem. sb., 45(87):3 (1958), 281–322 | MR | Zbl

[2] V. I. Zhegalov, A. N. Mironov, Differentsialnye uravneniya so starshimi chastnymi proizvodnymi, Izd-vo Kazanskogo matem. ob-va, Kazan, 2001

[3] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR | Zbl

[4] O. M. Dzhokhadze, “Ob invariantakh Laplasa dlya nekotorykh klassov lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh”, Differents. uravneniya, 40:1 (2004), 58–68 | MR | Zbl

[5] V. I. Zhegalov, “O trekhmernoi funktsii Rimana”, Sib. matem. zhurn., 38:5 (1997), 1074–1079 | MR | Zbl

[6] V. I. Zhegalov, “O sluchayakh razreshimosti giperbolicheskikh uravnenii v kvadraturakh”, Izv. vuzov. Matem., 2004, no. 7, 47–52 | MR | Zbl

[7] O. A. Koscheeva, “O postroenii funktsii Rimana dlya uravneniya Bianki v $n$-mernom prostranstve”, Izv. vuzov. Matem., 2008, no. 9, 40–46 | MR | Zbl

[8] F. Trikomi, Lektsii po uravneniyam v chastnykh proizvodnykh, IL, M., 1957 | MR | Zbl

[9] N. Kh. Ibragimov, “Gruppovoi analiz obyknovennykh differentsialnykh uravnenii i printsip invariantnosti v matematicheskoi fizike (k 150-letiyu so dnya rozhdeniya Sofusa Li)”, UMN, 47:4(286) (1992), 83–144 | MR | Zbl

[10] T. D. Dzhuraev, Ya. Popëlek, “O kanonicheskikh vidakh uravnenii s chastnymi proizvodnymi tretego poryadka”, UMN, 44:4(268) (1989), 237–238 | MR | Zbl