Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_3_a5, author = {I. Yu. Limonchenko}, title = {Bigraded {Betti} {Numbers} of {Certain} {Simple} {Polytopes}}, journal = {Matemati\v{c}eskie zametki}, pages = {373--388}, publisher = {mathdoc}, volume = {94}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a5/} }
I. Yu. Limonchenko. Bigraded Betti Numbers of Certain Simple Polytopes. Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 373-388. http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a5/
[1] V. M. Bukhshtaber, T. E. Panov, Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004
[2] R. P. Stanley, Combinatorics and Commutative Algebra, Progr. Math., 41, Birkhäuser Boston, Boston, MA, 1996 | MR | Zbl
[3] T. Panov, “Cohomology of face rings, and torus actions”, Surveys in Contemporary Mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 165–201, arXiv: math.AT/0506526 | MR | Zbl
[4] N. Terai, T. Hibi, “Computation of Betti numbers of monomial ideals associated with stacked polytopes”, Manuscripta Math., 92:4 (1997), 447–453 | DOI | MR | Zbl
[5] S. Choi, J. S. Kim, “A combinatorial proof of a formula for Betti numbers of a stacked polytope”, Electron. J. Combin., 17:1 (2010), Research Paper 9, arXiv: math.CO/0902.2444 | MR | Zbl
[6] F. Bosio, L. Meersseman, “Real quadrics in $\mathbf C^n$, complex manifolds and convex polytopes”, Acta Math., 197:1 (2006), 53–127 | DOI | MR | Zbl
[7] J. D. Stasheff, “Homotopy associativity of $H$-spaces. I”, Trans. Amer. Math. Soc., 108 (1963), 275–292 | DOI | MR | Zbl
[8] V. M. Buchstaber, “Lectures on toric topology”, Proceedings of Toric Topology Workshop KAIST 2008, Trends in Mathematics, 10, no. 1, ICMS, 2008, 1–64
[9] Macaulay 2, http://www.math.uiuc.edu/Macaulay2/
[10] T. Panov, “Moment-angle manifolds and complexes”, Proceedings of Toric Topology Workshop KAIST 2010, Trends in Mathematics, 12, no. 1, ICMS, 2010, 43–69