Bigraded Betti Numbers of Certain Simple Polytopes
Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 373-388.

Voir la notice de l'article provenant de la source Math-Net.Ru

The bigraded Betti numbers $\beta^{-i,2j}(P)$ of a simple polytope $P$ are the dimensions of the bigraded components of the Tor groups of the face ring $\mathbf{k}[P]$. The numbers $\beta^{-i,2j}(P)$ reflect the combinatorial structure of $P$, as well as the topological structure of the corresponding moment-angle manifold $\mathcal Z_P$; thus, they find numerous applications in combinatorial commutative algebra and toric topology. We calculate certain bigraded Betti numbers of the type $\beta^{-i,2(i+1)}$ for associahedra and apply the calculation of bigraded Betti numbers for truncation polytopes to study the topology of their moment-angle manifolds. Presumably, for these two series of simple polytopes, the numbers $\beta^{-i,2j}(P)$ attain their minimum and maximum values among all simple polytopes $P$ of fixed dimension with a given number of facets.
Keywords: bigraded Betti numbers of a simple polytope, simple convex polytope, Stasheff polytope, truncation polytope, stacked polytope, moment-angle manifold.
Mots-clés : associahedron
@article{MZM_2013_94_3_a5,
     author = {I. Yu. Limonchenko},
     title = {Bigraded {Betti} {Numbers} of {Certain} {Simple} {Polytopes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {373--388},
     publisher = {mathdoc},
     volume = {94},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a5/}
}
TY  - JOUR
AU  - I. Yu. Limonchenko
TI  - Bigraded Betti Numbers of Certain Simple Polytopes
JO  - Matematičeskie zametki
PY  - 2013
SP  - 373
EP  - 388
VL  - 94
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a5/
LA  - ru
ID  - MZM_2013_94_3_a5
ER  - 
%0 Journal Article
%A I. Yu. Limonchenko
%T Bigraded Betti Numbers of Certain Simple Polytopes
%J Matematičeskie zametki
%D 2013
%P 373-388
%V 94
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a5/
%G ru
%F MZM_2013_94_3_a5
I. Yu. Limonchenko. Bigraded Betti Numbers of Certain Simple Polytopes. Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 373-388. http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a5/

[1] V. M. Bukhshtaber, T. E. Panov, Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004

[2] R. P. Stanley, Combinatorics and Commutative Algebra, Progr. Math., 41, Birkhäuser Boston, Boston, MA, 1996 | MR | Zbl

[3] T. Panov, “Cohomology of face rings, and torus actions”, Surveys in Contemporary Mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2008, 165–201, arXiv: math.AT/0506526 | MR | Zbl

[4] N. Terai, T. Hibi, “Computation of Betti numbers of monomial ideals associated with stacked polytopes”, Manuscripta Math., 92:4 (1997), 447–453 | DOI | MR | Zbl

[5] S. Choi, J. S. Kim, “A combinatorial proof of a formula for Betti numbers of a stacked polytope”, Electron. J. Combin., 17:1 (2010), Research Paper 9, arXiv: math.CO/0902.2444 | MR | Zbl

[6] F. Bosio, L. Meersseman, “Real quadrics in $\mathbf C^n$, complex manifolds and convex polytopes”, Acta Math., 197:1 (2006), 53–127 | DOI | MR | Zbl

[7] J. D. Stasheff, “Homotopy associativity of $H$-spaces. I”, Trans. Amer. Math. Soc., 108 (1963), 275–292 | DOI | MR | Zbl

[8] V. M. Buchstaber, “Lectures on toric topology”, Proceedings of Toric Topology Workshop KAIST 2008, Trends in Mathematics, 10, no. 1, ICMS, 2008, 1–64

[9] Macaulay 2, http://www.math.uiuc.edu/Macaulay2/

[10] T. Panov, “Moment-angle manifolds and complexes”, Proceedings of Toric Topology Workshop KAIST 2010, Trends in Mathematics, 12, no. 1, ICMS, 2010, 43–69