On a Problem for Operator-Differential Second-Order Equations with Nonlocal Boundary Condition
Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 349-353.

Voir la notice de l'article provenant de la source Math-Net.Ru

An operator-differential second-order equation with nonlocal boundary condition at zero is considered on the semiaxis. Here we give sufficient conditions on the operator coefficients for the regular solvability of the boundary-value problem. Moreover, we obtain conditions for the completeness and minimality of the derivative of the chain of eigen- and associated vectors generated by the boundary-value problem under study and establish the completeness and minimality of the decreasing elementary solutions of the operator-differential equation under consideration.
Keywords: operator-differential second-order equation, regular solvability of a boundary-value problem, Hilbert space, nonlocal boundary condition.
@article{MZM_2013_94_3_a3,
     author = {K. A. Kerimov and S. S. Mirzoyev},
     title = {On a {Problem} for {Operator-Differential} {Second-Order} {Equations} with {Nonlocal} {Boundary} {Condition}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {349--353},
     publisher = {mathdoc},
     volume = {94},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a3/}
}
TY  - JOUR
AU  - K. A. Kerimov
AU  - S. S. Mirzoyev
TI  - On a Problem for Operator-Differential Second-Order Equations with Nonlocal Boundary Condition
JO  - Matematičeskie zametki
PY  - 2013
SP  - 349
EP  - 353
VL  - 94
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a3/
LA  - ru
ID  - MZM_2013_94_3_a3
ER  - 
%0 Journal Article
%A K. A. Kerimov
%A S. S. Mirzoyev
%T On a Problem for Operator-Differential Second-Order Equations with Nonlocal Boundary Condition
%J Matematičeskie zametki
%D 2013
%P 349-353
%V 94
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a3/
%G ru
%F MZM_2013_94_3_a3
K. A. Kerimov; S. S. Mirzoyev. On a Problem for Operator-Differential Second-Order Equations with Nonlocal Boundary Condition. Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 349-353. http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a3/

[1] Zh.-L. Lions, E. Madzhenes, Neodnorodnye granichnye zadachi i ikh prilozheniya, T. 1, Mir, M., 1971 | MR | Zbl

[2] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl

[3] M. G. Gasymov, “K teorii polinomialnykh operatornykh puchkov”, Dokl. AN SSSR, 199:4 (1971), 747–750 | MR | Zbl

[4] S. S. Mirzoev, “Usloviya korrektnoi razreshimosti kraevykh zadach dlya operatorno-differentsialnykh uravnenii”, Dokl. AN SSSR, 273:2 (1983), 292–295 | MR | Zbl

[5] A. A. Shkalikov, “Nekotorye voprosy teorii polinomialnykh operatornykh puchkov”, UMN, 38:3(231) (1983), 189–190 | MR | Zbl

[6] A. A. Shkalikov, “Ellipticheskie uravneniya v gilbertovom prostranstve i spektralnye zadachi, svyazannye s nimi”, Tr. sem. im. I. G. Petrovskogo, 14, Izd-vo Mosk. un-ta, M., 1989, 140–224

[7] A. R. Aliev, “Kraevye zadachi dlya odnogo klassa operatorno-differentsialnykh uravnenii vysokogo poryadka s peremennymi koeffitsientami”, Matem. zametki, 74:6 (2003), 803–814 | DOI | MR | Zbl

[8] A. R. Aliev, S. S. Mirzoev, “K teorii razreshimosti kraevykh zadach dlya odnogo klassa operatorno-differentsialnykh uravnenii vysokogo poryadka”, Funkts. analiz i ego pril., 44:3 (2010), 63–65 | DOI | MR

[9] M. G. Gasymov, S. S. Mirzoev, “O razreshimosti kraevykh zadach dlya operatorno-differentsialnykh uravnenii ellipticheskogo tipa vtorogo poryadka”, Differents. uravneniya, 28:4 (1992), 651–661 | MR | Zbl

[10] S. S. Mirzoev, A. R. Aliev, L. A. Rustamova, “Ob usloviyakh razreshimosti kraevoi zadachi dlya ellipticheskogo operatorno-differentsialnogo uravneniya s razryvnym koeffitsientom”, Matem. zametki, 92:5 (2012), 789–793 | DOI | Zbl

[11] S. S. Mirzoev, M. Yu. Salimov, “O razreshimosti kraevoi zadachi dlya uravneniya vtorogo poryadka v gilbertovom prostranstve s operatornym koeffitsientom v kraevom uslovii”, Matem. zametki, 91:6 (2012), 861–869 | DOI

[12] M. V. Keldysh, “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, UMN, 26:4(160) (1971), 15–41 | MR | Zbl