Optimal Arguments in Jackson's Inequality in the Power-Weighted Space~$L_2(\mathbb{R}^d)$
Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 338-348.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the determination of the optimal arguments in the exact Jackson inequality in the space $L_2$ on the Euclidean space with power weight equal to the product of the moduli of the coordinates with nonnegative powers. The optimal arguments are studied depending on the geometry of the spectrum of the approximating entire functions and the neighborhood of zero in the definition of the modulus of continuity. The optimal arguments are obtained in the case where the first skew field is a $l_p^d$-ball for $1\le p \le 2$, and the second is a parallelepiped.
Keywords: Jackson's inequality, power-weighted space $L_2(\mathbb{R}^d)$, modulus of continuity, skew field, Dunkl transform, Logan's problem, Hölder's inequality.
@article{MZM_2013_94_3_a2,
     author = {A. V. Ivanov and V. I. Ivanov},
     title = {Optimal {Arguments} in {Jackson's} {Inequality} in the {Power-Weighted} {Space~}$L_2(\mathbb{R}^d)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {338--348},
     publisher = {mathdoc},
     volume = {94},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a2/}
}
TY  - JOUR
AU  - A. V. Ivanov
AU  - V. I. Ivanov
TI  - Optimal Arguments in Jackson's Inequality in the Power-Weighted Space~$L_2(\mathbb{R}^d)$
JO  - Matematičeskie zametki
PY  - 2013
SP  - 338
EP  - 348
VL  - 94
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a2/
LA  - ru
ID  - MZM_2013_94_3_a2
ER  - 
%0 Journal Article
%A A. V. Ivanov
%A V. I. Ivanov
%T Optimal Arguments in Jackson's Inequality in the Power-Weighted Space~$L_2(\mathbb{R}^d)$
%J Matematičeskie zametki
%D 2013
%P 338-348
%V 94
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a2/
%G ru
%F MZM_2013_94_3_a2
A. V. Ivanov; V. I. Ivanov. Optimal Arguments in Jackson's Inequality in the Power-Weighted Space~$L_2(\mathbb{R}^d)$. Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 338-348. http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a2/

[1] M. Rösler, “Dunkl operators: theory and applications”, Orthogonal Polynomials and Special Functions, Lecture Notes in Math., 1817, Springer-Verlag, Berlin, 2003, 93–135 | DOI | MR | Zbl

[2] M. de Jeu, “Paley–Wiener theorems for the Dunkl transform”, Trans. Amer. Math. Soc., 358:10 (2006), 4225–4250 | DOI | MR | Zbl

[3] A. V. Ivanov, V. I. Ivanov, “Teoriya Danklya i teorema Dzheksona v prostranstve $L_2(\mathbb R^d)$ so stepennym vesom”, Tr. IMM UrO RAN, 16, no. 4, 2010, 180–192

[4] A. V. Ivanov, “Nekotorye ekstremalnye zadachi dlya tselykh funktsii v vesovykh prostranstvakh”, Izv. TulGU. Estestvennye nauki, 2010, no. 1, 26–44

[5] A. V. Ivanov, “Zadacha Logana dlya tselykh funktsii mnogikh peremennykh i konstanty Dzheksona v vesovykh prostranstvakh”, Izv. TulGU. Estestvennye nauki, 2011, no. 2, 29–58

[6] E. E. Berdysheva, “Dve vzaimosvyazannye ekstremalnye zadachi dlya tselykh funktsii mnogikh peremennykh”, Matem. zametki, 66:3 (1999), 336–350 | DOI | MR | Zbl

[7] B. F. Logan, “Extremal problems for positive-definite bandlimited functions. I. Eventually positive functions with zero integral”, SIAM J. Math. Anal., 14:2 (1983), 249–252 | DOI | MR | Zbl

[8] D. V. Gorbachev, “Ekstremalnye zadachi dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa”, Matem. zametki, 68:2 (2000), 179–187 | DOI | MR | Zbl

[9] V. A. Yudin, “Mnogomernaya teorema Dzheksona v $L_2$”, Matem. zametki, 29:2 (1981), 309–315 | MR | Zbl

[10] C. Frappier, P. Olivier, “A quadrature formula involving zeros of Bessel functions”, Math. Comp., 60:201 (1993), 303–316 | DOI | MR | Zbl

[11] G. R. Grozev, Q. I. Rahman, “A quadrature formula with zeros of Bessel functions as nodes”, Math. Comp., 64:210 (1995), 715–725 | DOI | MR | Zbl

[12] G. N. Vatson, Teoriya besselevykh funktsii, Ch. 1, IL, M., 1949 | MR | Zbl

[13] B. M. Levitan, “Razlozhenie po funktsiyam Besselya v ryady i integraly Fure”, UMN, 6:2(42) (1951), 102–143 | MR | Zbl