Criteria for the $p$-Solvability and~$p$-Supersolvability of Finite Groups
Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 455-472.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$$K$, and $H$ be subgroups of a group $G$ and $K\leqslant H$. Then we say that $A$ covers the pair $(K,H)$ if $AH=AK$ and avoids the pair $(K,H)$ if $A\cap H=A\cap K$. A pair $(K,H)$ in $G$ is said to be maximal if $K$ is a maximal subgroup of $H$. In the present paper, we study finite groups in which some subgroups cover or avoid distinguished systems of maximal pairs of these groups. In particular, generalizations of a series of known results on (partial) $CAP$-subgroups are obtained.
Mots-clés : solvable group, supersolvable group, maximal pair
Keywords: weakly $CAP_{p}$-subgroup, weakly $CAP$-subgroup, (conditional) cover-avoiding property of subgroups, (partial) $CAP$-subgroup.
@article{MZM_2013_94_3_a11,
     author = {Yufeng Liu and Guo Wenbin and V. A. Kovaleva and A. N. Skiba},
     title = {Criteria for the $p${-Solvability} and~$p${-Supersolvability} of {Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {455--472},
     publisher = {mathdoc},
     volume = {94},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a11/}
}
TY  - JOUR
AU  - Yufeng Liu
AU  - Guo Wenbin
AU  - V. A. Kovaleva
AU  - A. N. Skiba
TI  - Criteria for the $p$-Solvability and~$p$-Supersolvability of Finite Groups
JO  - Matematičeskie zametki
PY  - 2013
SP  - 455
EP  - 472
VL  - 94
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a11/
LA  - ru
ID  - MZM_2013_94_3_a11
ER  - 
%0 Journal Article
%A Yufeng Liu
%A Guo Wenbin
%A V. A. Kovaleva
%A A. N. Skiba
%T Criteria for the $p$-Solvability and~$p$-Supersolvability of Finite Groups
%J Matematičeskie zametki
%D 2013
%P 455-472
%V 94
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a11/
%G ru
%F MZM_2013_94_3_a11
Yufeng Liu; Guo Wenbin; V. A. Kovaleva; A. N. Skiba. Criteria for the $p$-Solvability and~$p$-Supersolvability of Finite Groups. Matematičeskie zametki, Tome 94 (2013) no. 3, pp. 455-472. http://geodesic.mathdoc.fr/item/MZM_2013_94_3_a11/

[1] L. A. Shemetkov, Formatsii konechnykh grupp, Sovremennaya algebra, Nauka, M., 1978 | MR | Zbl

[2] K. Doerk, T. Hawkes, Finite Soluble Groups, de Gruyter Exp. Math., 4, Walter de Gruyter, Berlin, 1992 | MR | Zbl

[3] O. Ore, “Contributions in the theory of groups of finite order”, Duke Math. J., 5:2 (1939), 431–460 | DOI | MR | Zbl

[4] S. E. Stonehewer, “Permutable subgroups in Infinite Groups”, Math. Z., 125 (1972), 1–16 | DOI | MR | Zbl

[5] A. Ballester-Bolinches, L. M. Ezquerro, A. N. Skiba, “Local embeddings of some families of subgroups of finite groups”, Acta Math. Sin. (Engl. Ser.), 25:6 (2009), 869–882 | DOI | MR | Zbl

[6] A. Ballester-Bolinches, L. M. Ezquerro, A. N. Skiba, “Subgroups of finite groups with a strong cover-avoidance property”, Bull. Aust. Math. Soc., 79:3 (2009), 499–506 | DOI | MR | Zbl

[7] D. L. Johnson, “A note on supersoluble groups”, Canad. J. Math., 23 (1971), 562–564 | DOI | MR | Zbl

[8] H. G. Bray, W. E. Deskins, D. Johnson, J. F. Humphreys, B. M. Puttaswamaiah, P. Venzke, G. L. Walls, Between Nilpotent and Solvable, ed. M. Weinstein, Polygonal Publ. House, Washington, NJ, 1982 | MR | Zbl

[9] W. Guo, The Theory of Classes of Groups, Math. Appl., 505, Kluwer Acad. Publ., Dordrecht, 2000 | MR | Zbl

[10] X. Guo, K. P. Shum, “Cover-avoidance properties and the structure of finite groups”, J. Pure Appl. Algebra, 181:2-3 (2003), 297–308 | DOI | MR | Zbl

[11] L. M. Ezquerro, “A contribution to the theory of finite supersolvable groups”, Rend. Sem. Mat. Univ. Padova, 89 (1993), 161–170 | MR | Zbl

[12] B. Huppert, Endliche Gruppen. I, Die Grundlehren Math. Wiss., 134, Springer-Verlag, Berlin, 1967 | MR | Zbl

[13] H. Wielandt, Subnormal subgroups and permutation groups, Lectures given at the Ohio State University, Columbus, Ohio, 1971

[14] Y. Fan, X. Y. Guo, K. P. Shum, “Remarks on two generalizations of normality of subgroups”, Chinese J. Contemp. Math., 27:2 (2006), 139–146 | MR | Zbl

[15] Y. Wang, “$c$-normality of groups and its properties”, J. Algebra, 180:3 (1996), 954–965 | DOI | MR | Zbl

[16] L. A. Shemetkov, A. N. Skiba, “On the $\mathcal{X}\Phi$-hypercentre of finite groups”, J. Algebra, 322:6 (2009), 2106–2117 | DOI | MR | Zbl