On Gorenstein Injective and Projective Comodules
Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 266-278

Voir la notice de l'article provenant de la source Math-Net.Ru

Gorenstein injective, projective and coflat comodules were introduced and studied by Asensio and Enochs et al. We further investigate these comodules and introduce $n$-Gorenstein injective, projective and coflat comodules, which give a new characterization of Gorenstein comodules.
Keywords: Gorenstein comodule, $1$-Gorenstein comodule, $n$-Gorenstein comodule, right semiperfect coalgebra.
@article{MZM_2013_94_2_a9,
     author = {Q. X. Pan and Q. Li},
     title = {On {Gorenstein} {Injective} and {Projective} {Comodules}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {266--278},
     publisher = {mathdoc},
     volume = {94},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a9/}
}
TY  - JOUR
AU  - Q. X. Pan
AU  - Q. Li
TI  - On Gorenstein Injective and Projective Comodules
JO  - Matematičeskie zametki
PY  - 2013
SP  - 266
EP  - 278
VL  - 94
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a9/
LA  - ru
ID  - MZM_2013_94_2_a9
ER  - 
%0 Journal Article
%A Q. X. Pan
%A Q. Li
%T On Gorenstein Injective and Projective Comodules
%J Matematičeskie zametki
%D 2013
%P 266-278
%V 94
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a9/
%G ru
%F MZM_2013_94_2_a9
Q. X. Pan; Q. Li. On Gorenstein Injective and Projective Comodules. Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 266-278. http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a9/