Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_2_a6, author = {N. A. Manakova and A. G. Dylkov}, title = {Optimal {Control} of the {Solutions} of the {Initial-Finish} {Problem} for the {Linear} {Hoff} {Model}}, journal = {Matemati\v{c}eskie zametki}, pages = {225--236}, publisher = {mathdoc}, volume = {94}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a6/} }
TY - JOUR AU - N. A. Manakova AU - A. G. Dylkov TI - Optimal Control of the Solutions of the Initial-Finish Problem for the Linear Hoff Model JO - Matematičeskie zametki PY - 2013 SP - 225 EP - 236 VL - 94 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a6/ LA - ru ID - MZM_2013_94_2_a6 ER -
N. A. Manakova; A. G. Dylkov. Optimal Control of the Solutions of the Initial-Finish Problem for the Linear Hoff Model. Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 225-236. http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a6/
[1] G. A. Sviridyuk, V. E. Fedorov, Linear Sobolev Type Equations and Degenerate Semigroups of Operators, Inverse Ill-posed Probl. Ser., VSP, Utrecht, 2003 | MR | Zbl
[2] S. A. Zagrebina, “Zadacha Shouoltera–Sidorova–Verigina dlya lineinykh uravnenii sobolevskogo tipa”, Neklassicheskie uravneniya matematicheskoi fiziki, Trudy mezhdunarodnoi konferentsii “Differentsialnye uravneniya, teoriya funktsii i prilozheniya”, posvyaschennoi 100-letiyu so dnya rozhdeniya akademika I. N. Vekua, In-t matem. im. S. L. Soboleva SO RAN, Novosibirsk, 2007, 150–157
[3] S. A. Zagrebina, “Nachalno-konechnye zadachi dlya uravnenii sobolevskogo tipa kak obobscheniya zadachi Shouoltera–Sidorova”, Obozrenie priklad. i prom. matematiki, 17:4 (2010), 552–553
[4] A. A. Zamyshlyaeva, A. V. Yuzeeva, “Nachalno-konechnaya zadacha dlya uravneniya Bussineska–Lyava na grafe”, Izv. Irkutsk. gos. un-ta. Ser. Matem., 3:2 (2010), 85–96
[5] G. V. Demidenko, S. V. Uspenskii, Partial Differential Equations and Systems not Solvable with Respect to the Highest-Order Derivative, Monogr. Textbooks Pure Appl. Math., 256, Marcel Dekker, New York, 2003 | MR | Zbl
[6] A. G. Sveshnikov, A. B. Alshin, M. O. Korpusov, Yu. D. Pletner, Lineinye i nelineinye uravneniya sobolevskogo tipa, Matematika i prikladnaya matematika, Fizmatlit, M., 2007 | Zbl
[7] G. A. Sviridyuk, S. A. Zagrebina, “Zadacha Shouoltera–Sidorova kak fenomen uravnenii sobolevskogo tipa”, Izv. Irkutsk. gos. un-ta. Ser. Matem., 3:1 (2010), 51–72
[8] A. V. Keller, “Chislennoe reshenie zadachi startovogo upravleniya dlya sistemy uravnenii leontevskogo tipa”, Obozrenie priklad. i prom. matematiki, 16:2 (2009), 345–346
[9] N. A. Manakova, “Zadacha optimalnogo upravleniya dlya uravneniya Oskolkova nelineinoi filtratsii”, Differents. uravneniya, 43:9 (2007), 1185–1192 | MR | Zbl
[10] Zh.-L. Lions, Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR | Zbl
[11] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999 | MR | Zbl
[12] G. A. Sviridyuk, A. A. Bayazitova, “O pryamoi i obratnoi zadachakh dlya uravnenii Khoffa na grafe”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 1(18) (2009), 6–17