Integrality of the Symmetric Algebra of Graph Ideals
Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 190-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider edge ideals associated to some classes of simple graphs and study the projective dimension and the integrality of the symmetric algebra for them. We also analyze criteria for torsion freeness of the symmetric powers and determine conditions of acyclicity of the $\mathcal{Z}$-complex of these graph ideals.
Keywords: edge ideals, projective dimension, symmetric algebra
Mots-clés : complexes.
@article{MZM_2013_94_2_a3,
     author = {M. Imbesi},
     title = {Integrality of the {Symmetric} {Algebra} of {Graph} {Ideals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {190--206},
     publisher = {mathdoc},
     volume = {94},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a3/}
}
TY  - JOUR
AU  - M. Imbesi
TI  - Integrality of the Symmetric Algebra of Graph Ideals
JO  - Matematičeskie zametki
PY  - 2013
SP  - 190
EP  - 206
VL  - 94
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a3/
LA  - ru
ID  - MZM_2013_94_2_a3
ER  - 
%0 Journal Article
%A M. Imbesi
%T Integrality of the Symmetric Algebra of Graph Ideals
%J Matematičeskie zametki
%D 2013
%P 190-206
%V 94
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a3/
%G ru
%F MZM_2013_94_2_a3
M. Imbesi. Integrality of the Symmetric Algebra of Graph Ideals. Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 190-206. http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a3/

[1] G. Molica Bisci, “Symmetric algebra of ideals of graphs”, Rend. Circ. Mat. Palermo (2) Suppl., 70, part II (2002), 167–175 | MR | Zbl

[2] G. Restuccia, “On the symmetric algebra of a module of projective dimension two”, An. Univ. Bucureşti Mat., 40:1-2 (1991), 83–91 | MR | Zbl

[3] R. H. Villarreal, Monomial Algebras, Monogr. Textbooks Pure Appl. Math., 238, Marcel Dekker, New York, 2001 | MR | Zbl

[4] E. G. Evans, P. Griffith, Syzygies, London Math. Soc. Lecture Note Ser., 106, Cambridge Univ. Press, Cambridge, 1985 | MR | Zbl

[5] S. Eliahou, R. H. Villarreal, “The second Betti number of an edge ideal”, XXXI National Congress of the Mexican Mathematical Society, Aportaciones Mat. Comun., 25, Soc. Mat. Mexicana, México, 1999, 115–119 | MR | Zbl

[6] J. Herzog, A. Simis, W. V. Vasconcelos, “On the arithmetic and homology of algebras of linear type”, Trans. Amer. Math. Soc., 283:2 (1984), 661–683 | DOI | MR | Zbl

[7] L. Robbiano, CoCoATeam, CoCoA 4, http://cocoa.dima.unige.it

[8] D. Grayson, M. Stillman, Macaulay2, http://www.math.illinois.edu/Macaulay2/

[9] A. Micali, “Sur les algèbres universelles”, Ann. Inst. Fourier (Grenoble), 14:2 (1964), 33–87 | DOI | MR | Zbl

[10] L. L. Avramov, “Complete intersections and symmetric algebras”, J. Algebra, 73:1 (1981), 248–263 | DOI | MR | Zbl

[11] G. Restuccia, “Puissances symétriques sans torsion”, Cahiers Mathém., Montpellier, 39 (1992)

[12] G. Restuccia, C. Ionescu, “$q$-Torsion freeness of symmetric powers”, Rend. Circ. Mat. Palermo (2), 46:3 (1997), 329–346 | DOI | MR | Zbl

[13] G. Molica, G. Restuccia, “Torsion free exterior powers of a module and their resolutions”, An. Ştiinţ. Univ. Ovidius Constanţa Ser. Mat., 10:1 (2002), 101–108 | MR | Zbl

[14] C. Peskine, L. Szpiro, “Dimension projective finie et cohomologie locale. Applications à la demonstration de conjectures de M. Auslander, H. Bass et A. Grothendieck”, Inst. Hautes Études Sci. Publ. Math., 42:1 (1973), 47–119 | DOI | MR | Zbl