Limit Ultraspherical Series and Their Approximation Properties
Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 295-309
Voir la notice de l'article provenant de la source Math-Net.Ru
We study new series of the form $\sum_{k=0}^\infty f_k^{-1} \widehat P_k^{-1}(x)$ in which the general term $f_k^{-1}\widehat P_k^{-1}(x)$, $k=0,1,\dots$, is obtained by passing to the limit as $\alpha\to-1$ from the general term $\widehat f_k^\alpha\widehat P_k^{\alpha,\alpha}(x)$ of the Fourier series $\sum_{k=0}^\infty f_k^\alpha\widehat P_k^{\alpha,\alpha}(x)$ in Jacobi ultraspherical polynomials $\widehat P_k^{\alpha,\alpha}(x)$ generating, for $\alpha>-1$, an orthonormal system with weight $(1-x^2)^\alpha$ on $[-1,1]$. We study the properties of the partial sums $S_n^{-1}(f,x)=\sum_{k=0}^nf_k^{-1}\widehat P_k^{-1}(x)$ of the limit ultraspherical series $\sum_{k=0}^\infty f_k^{-1}\widehat P_k^{-1}(x)$. In particular, it is shown that the operator $S_n^{-1}(f)=S_n^{-1}(f,x)$ is the projection onto the subspace of algebraic polynomials $p_n=p_n(x)$ of degree at most $n$, i.e., $S_n(p_n)=p_n$; in addition, $S_n^{-1}(f,x)$ coincides with $f(x)$ at the endpoints $\pm1$, i.e., $S_n^{-1}(f,\pm1)=f(\pm1)$. It is proved that the Lebesgue function $\Lambda_n(x)$ of the partial sums $S_n^{-1}(f,x)$ is of the order of growth equal to $O(\ln n)$, and, more precisely, it is proved that $\Lambda_n(x)\le c(1+\ln(1+n\sqrt{1-x^2}\mspace{2mu}))$, $-1\le x\le 1$.
Keywords:
limit ultraspherical series, Fourier series, Christoffel–Darboux formula, approximation of continuous functions.
Mots-clés : Lebesgue function of partial sums, Jacobi polynomial
Mots-clés : Lebesgue function of partial sums, Jacobi polynomial
@article{MZM_2013_94_2_a11,
author = {I. I. Sharapudinov},
title = {Limit {Ultraspherical} {Series} and {Their} {Approximation} {Properties}},
journal = {Matemati\v{c}eskie zametki},
pages = {295--309},
publisher = {mathdoc},
volume = {94},
number = {2},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a11/}
}
I. I. Sharapudinov. Limit Ultraspherical Series and Their Approximation Properties. Matematičeskie zametki, Tome 94 (2013) no. 2, pp. 295-309. http://geodesic.mathdoc.fr/item/MZM_2013_94_2_a11/