On the Algebraic Independence of Values of Generalized Hypergeometric Functions
Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 94-108
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider hypergeometric functions satisfying homogeneous linear differential equations of arbitrary order. We prove general theorems on the algebraic independence of the solutions of a set of hypergeometric equations as well as of the values of these solutions at algebraic points. The conditions of most theorems are necessary and sufficient.
Keywords:
generalized hypergeometric function, linear differential equation, algebraic independence of solutions, differential field, transcendence degree, contiguous functions.
Mots-clés : Galois group
Mots-clés : Galois group
@article{MZM_2013_94_1_a7,
author = {V. A. Gorelov},
title = {On the {Algebraic} {Independence} of {Values} of {Generalized} {Hypergeometric} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {94--108},
publisher = {mathdoc},
volume = {94},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a7/}
}
V. A. Gorelov. On the Algebraic Independence of Values of Generalized Hypergeometric Functions. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 94-108. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a7/