On Absolute Convergence of Multiple Fourier Series
Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 81-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for $\beta$-absolute convergence ($0\beta\leq 1$) of multiple Fourier series of functions of the classes $$ L^2([0,2\pi]^{N}),\qquad (\Lambda^{1},\Lambda^{2},\dots,\Lambda^{N})BV^{(p)}([0,2\pi]^{N}),\qquad r-BV([0,2\pi]^{N}). $$
Keywords: absolute convergence, multiple Fourier series, functions of $(\Lambda^{1},\Lambda^{2},\dots,\Lambda^{N})BV^{(p)}$ and $r-BV$.
@article{MZM_2013_94_1_a6,
     author = {R. G. Vyas and K. N. Darji},
     title = {On {Absolute} {Convergence} of {Multiple} {Fourier} {Series}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {81--93},
     publisher = {mathdoc},
     volume = {94},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a6/}
}
TY  - JOUR
AU  - R. G. Vyas
AU  - K. N. Darji
TI  - On Absolute Convergence of Multiple Fourier Series
JO  - Matematičeskie zametki
PY  - 2013
SP  - 81
EP  - 93
VL  - 94
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a6/
LA  - ru
ID  - MZM_2013_94_1_a6
ER  - 
%0 Journal Article
%A R. G. Vyas
%A K. N. Darji
%T On Absolute Convergence of Multiple Fourier Series
%J Matematičeskie zametki
%D 2013
%P 81-93
%V 94
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a6/
%G ru
%F MZM_2013_94_1_a6
R. G. Vyas; K. N. Darji. On Absolute Convergence of Multiple Fourier Series. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 81-93. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a6/

[1] M. Schramm, D. Waterman, “Absolute convergence of Fourier series of functions of class $\Lambda BV^{(p)}$ and $\varphi\Lambda BV$”, Acta Math. Acad. Sci. Hungar., 40:3-4 (1982), 273–276 | DOI | MR | Zbl

[2] R. G. Vyas, “On the absolute convergence of Fourier series of functions of $\Lambda BV^{(p)}$ and $\varphi\Lambda BV$”, Georgian Math. J., 14:4 (2007), 769–774 | MR | Zbl

[3] S. Minakshisundaram, O. Szász, “On absolute convergence of multiple Fourier series”, Trans. Amer. Math. Soc., 61 (1947), 36–53 | DOI | MR | Zbl

[4] F. Móricz, A. Veres, “On the absolute convergence of multiple Fourier series”, Acta Math. Hungar., 117:3 (2007), 275–292 | DOI | MR | Zbl

[5] F. Móricz, A. Veres, “Absolute convergence of multiple Fourier series revisited”, Anal. Math., 34:2 (2008), 145–162 | DOI | MR | Zbl

[6] A. N. Bakhvalov, “Koeffitsienty Fure funktsii iz mnogomernykh klassov ogranichennoi $\Lambda$-variatsii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 66:1 (2011), 8–16 | MR

[7] M. I. Dyachenko, D. Waterman, “Convergence of double Fourier series and $W$-classes”, Trans. Amer. Math. Soc., 357:1 (2005), 397–407 | DOI | MR | Zbl

[8] A. Zygmund, Trigonometric Series, Vol. I, II, Cambridge Univ. Press, Cambridge, 1977 | MR | Zbl

[9] J. R. Patadia, R. G. Vyas, “Fourier series with small gaps and functions of generalized variations”, J. Math. Anal. Appl., 182:1 (1994), 113–126 | DOI | MR | Zbl

[10] R. G. Vyas, J. R. Patadia, “On the absolute convergence of Fourier series of functions of generalized bounded variations”, J. Indian Math. Soc. (N.S.), 62:1-4 (1996), 129–136 | MR | Zbl