Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_94_1_a6, author = {R. G. Vyas and K. N. Darji}, title = {On {Absolute} {Convergence} of {Multiple} {Fourier} {Series}}, journal = {Matemati\v{c}eskie zametki}, pages = {81--93}, publisher = {mathdoc}, volume = {94}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a6/} }
R. G. Vyas; K. N. Darji. On Absolute Convergence of Multiple Fourier Series. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 81-93. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a6/
[1] M. Schramm, D. Waterman, “Absolute convergence of Fourier series of functions of class $\Lambda BV^{(p)}$ and $\varphi\Lambda BV$”, Acta Math. Acad. Sci. Hungar., 40:3-4 (1982), 273–276 | DOI | MR | Zbl
[2] R. G. Vyas, “On the absolute convergence of Fourier series of functions of $\Lambda BV^{(p)}$ and $\varphi\Lambda BV$”, Georgian Math. J., 14:4 (2007), 769–774 | MR | Zbl
[3] S. Minakshisundaram, O. Szász, “On absolute convergence of multiple Fourier series”, Trans. Amer. Math. Soc., 61 (1947), 36–53 | DOI | MR | Zbl
[4] F. Móricz, A. Veres, “On the absolute convergence of multiple Fourier series”, Acta Math. Hungar., 117:3 (2007), 275–292 | DOI | MR | Zbl
[5] F. Móricz, A. Veres, “Absolute convergence of multiple Fourier series revisited”, Anal. Math., 34:2 (2008), 145–162 | DOI | MR | Zbl
[6] A. N. Bakhvalov, “Koeffitsienty Fure funktsii iz mnogomernykh klassov ogranichennoi $\Lambda$-variatsii”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 66:1 (2011), 8–16 | MR
[7] M. I. Dyachenko, D. Waterman, “Convergence of double Fourier series and $W$-classes”, Trans. Amer. Math. Soc., 357:1 (2005), 397–407 | DOI | MR | Zbl
[8] A. Zygmund, Trigonometric Series, Vol. I, II, Cambridge Univ. Press, Cambridge, 1977 | MR | Zbl
[9] J. R. Patadia, R. G. Vyas, “Fourier series with small gaps and functions of generalized variations”, J. Math. Anal. Appl., 182:1 (1994), 113–126 | DOI | MR | Zbl
[10] R. G. Vyas, J. R. Patadia, “On the absolute convergence of Fourier series of functions of generalized bounded variations”, J. Indian Math. Soc. (N.S.), 62:1-4 (1996), 129–136 | MR | Zbl