On the Special Properties of the Boundary Layer in Singularly Perturbed Problems with Multiple Root of the Degenerate Equation
Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 68-80
Cet article a éte moissonné depuis la source Math-Net.Ru
Using the boundary-value problem for the singularly perturbed second-order differential equation as an example, we show that the multiplicity of the root of the degenerate equation significantly affects the asymptotics of the solution, especially in the boundary layer.
Keywords:
singularly perturbed problem, second-order differential equation, boundary layer, boundary layer series.
@article{MZM_2013_94_1_a5,
author = {V. F. Butuzov},
title = {On the {Special} {Properties} of the {Boundary} {Layer} in {Singularly} {Perturbed} {Problems} with {Multiple} {Root} of the {Degenerate} {Equation}},
journal = {Matemati\v{c}eskie zametki},
pages = {68--80},
year = {2013},
volume = {94},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a5/}
}
TY - JOUR AU - V. F. Butuzov TI - On the Special Properties of the Boundary Layer in Singularly Perturbed Problems with Multiple Root of the Degenerate Equation JO - Matematičeskie zametki PY - 2013 SP - 68 EP - 80 VL - 94 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a5/ LA - ru ID - MZM_2013_94_1_a5 ER -
V. F. Butuzov. On the Special Properties of the Boundary Layer in Singularly Perturbed Problems with Multiple Root of the Degenerate Equation. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 68-80. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a5/
[1] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Aktualnye voprosy prikladnoi i vychichslitelnoi matematiki, Vysshaya shkola, M., 1990 | MR | Zbl
[2] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR | Zbl
[3] V. F. Butuzov, “O periodicheskikh resheniyakh singulyarno vozmuschennykh parabolicheskikh zadach v sluchae kratnykh kornei vyrozhdennogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 51:1 (2011), 44–55 | MR | Zbl
[4] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, 1992 | MR | Zbl