Properties of the Minimum Function in the Quadratic Problem
Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 36-45
Voir la notice de l'article provenant de la source Math-Net.Ru
Perturbations of the quadratic form minimization problem under quadratic constraints of the type of equalities are considered. The minimum function $\omega$ in this problem which, to each perturbation of the original problem, assigns a sharp lower bound in the perturbed problem is studied. Sufficient conditions for the upper and lower semicontinuity of the minimum function $\omega$ both at zero and in its neighborhood are obtained. Examples showing the importance of these conditions are given.
Keywords:
quadratic mapping, quadratic form minimization, minimum function, upper and lower semicontinuity.
@article{MZM_2013_94_1_a2,
author = {A. V. Arutyunov},
title = {Properties of the {Minimum} {Function} in the {Quadratic} {Problem}},
journal = {Matemati\v{c}eskie zametki},
pages = {36--45},
publisher = {mathdoc},
volume = {94},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a2/}
}
A. V. Arutyunov. Properties of the Minimum Function in the Quadratic Problem. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 36-45. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a2/