On $m$-Transitive Groups
Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 151-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mots-clés : $m$-group, signature
Keywords: $m$-transitive group, algebraic system, involutory automorphism, anti-isomorphism of a lattice, faithful representation of an $m$-group.
@article{MZM_2013_94_1_a11,
     author = {A. V. Zenkov},
     title = {On $m${-Transitive} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {151--153},
     publisher = {mathdoc},
     volume = {94},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a11/}
}
TY  - JOUR
AU  - A. V. Zenkov
TI  - On $m$-Transitive Groups
JO  - Matematičeskie zametki
PY  - 2013
SP  - 151
EP  - 153
VL  - 94
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a11/
LA  - ru
ID  - MZM_2013_94_1_a11
ER  - 
%0 Journal Article
%A A. V. Zenkov
%T On $m$-Transitive Groups
%J Matematičeskie zametki
%D 2013
%P 151-153
%V 94
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a11/
%G ru
%F MZM_2013_94_1_a11
A. V. Zenkov. On $m$-Transitive Groups. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 151-153. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a11/

[1] M. Giraudet, F. Lucas, Fund. Math., 139:2 (1991), 75–89 | MR | Zbl

[2] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[3] V. M. Kopytov, N. Ya. Medvedev, The Theory of Lattice-Ordered Groups, Math. Appl., 307, Kluwer Acad. Publ., Dordrecht, 1994 | MR | Zbl

[4] A. M. W. Glass, Partially Ordered Groups, Ser. Algebra, 7, World Sci. Publ., Singapore, 1999 | MR | Zbl

[5] P. Kon, Universalnaya algebra, Mir, M., 1968 | MR | Zbl