Approximations of the Resolvent for a Non--Self-Adjoint Diffusion Operator with Rapidly Oscillating Coefficients
Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 130-150.

Voir la notice de l'article provenant de la source Math-Net.Ru

A strongly inhomogeneous diffusion operator with drift depending on a small parameter $\varepsilon$ is studied in the space $L^2(\mathbb R^n)$. The strong inhomogeneity consists in that the coefficients of the operator are $\varepsilon$-periodic and, in addition, the drift vector is of the order of $\varepsilon^{-1}$. As $\varepsilon\to 0$, approximations in the operator $L^2$‑norm of order $\varepsilon$ and $\varepsilon^2$ are constructed for the resolvent of the operator. For each of these orders of approximation, an averaged diffusion operator is obtained. A spectral method based on the Bloch representation for an operator with periodic coefficients is used.
Keywords: diffusion operator with drift, resolvent of an operator, averaged diffusion operator, Bloch representation for an operator, Sobolev space, Gelfand transformation.
@article{MZM_2013_94_1_a10,
     author = {S. E. Pastukhova},
     title = {Approximations of the {Resolvent} for a {Non--Self-Adjoint} {Diffusion} {Operator} with {Rapidly} {Oscillating} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {130--150},
     publisher = {mathdoc},
     volume = {94},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a10/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - Approximations of the Resolvent for a Non--Self-Adjoint Diffusion Operator with Rapidly Oscillating Coefficients
JO  - Matematičeskie zametki
PY  - 2013
SP  - 130
EP  - 150
VL  - 94
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a10/
LA  - ru
ID  - MZM_2013_94_1_a10
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T Approximations of the Resolvent for a Non--Self-Adjoint Diffusion Operator with Rapidly Oscillating Coefficients
%J Matematičeskie zametki
%D 2013
%P 130-150
%V 94
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a10/
%G ru
%F MZM_2013_94_1_a10
S. E. Pastukhova. Approximations of the Resolvent for a Non--Self-Adjoint Diffusion Operator with Rapidly Oscillating Coefficients. Matematičeskie zametki, Tome 94 (2013) no. 1, pp. 130-150. http://geodesic.mathdoc.fr/item/MZM_2013_94_1_a10/

[1] D. Gilbarg, M. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[2] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[3] V. V. Zhikov, “Asimptoticheskoe povedenie i stabilizatsiya reshenii parabolicheskogo uravneniya vtorogo poryadka s mladshimi chlenami”, Tr. MMO, 46, Izdatelstvo Mosk. un-ta, M., 1983, 69–98 | MR | Zbl

[4] A. Bensoussan, J.-L. Lions, G. C. Papanicolaou, Asymptotic Analysis for Periodic Structures, Stud. Math. Appl., 5, North-Holland Publ., Amsterdam, 1978 | MR | Zbl

[5] E. V. Sevostyanova, “Asimptoticheskoe razlozhenie resheniya ellipticheskogo uravneniya vtorogo poryadka s periodicheskimi bystro ostsilliruyuschimi koeffitsientami”, Matem. sb., 115(157):2(6) (1981), 204–222 | MR | Zbl

[6] V. V. Zhikov, “Spektralnyi podkhod k assimptoticheskim zadacham diffuzii”, Differents. uravneniya, 25:1 (1989), 44–50 | MR | Zbl

[7] C. Conca, M. Vanninathan, “Homogenization of periodic structures via Bloch decomposition”, SIAM J. Appl. Math., 57:6 (1997), 1639–1659 | DOI | MR | Zbl

[8] C. Conca, R. Orive, M. Vanninathan, “Bloch approximation in homogenization and applications”, SIAM J. Math. Anal., 33:5 (2002), 1166–1198 | MR | Zbl

[9] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR | Zbl

[10] E. S. Vasilevskaya, T. A. Suslina, “Porogovye approksimatsii faktorizovannogo samosopryazhennogo operatornogo semeistva s uchetom pervogo i vtorogo korrektorov”, Algebra i analiz, 23:2 (2011), 102–146 | MR

[11] V. V. Zhikov, “O spektralnom metode v teorii usredneniya”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 250, Nauka, M., 2005, 95–104 | MR | Zbl

[12] I. A. Aleksandrova, “Spektralnyi metod v asimptoticheskikh zadachakh diffuzii so snosom”, Matem. zametki, 59:5 (1996), 768–770 | DOI | MR | Zbl

[13] V. V. Zhikov, “Ob operatornykh otsenkakh v teorii usredneniya”, DAN, 406:5 (2006), 597–601 | MR | Zbl

[14] V. V. Zhikov, S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[15] V. V. Zhikov, S. E. Pastukhova, “Estimates of homogenization for a parabolic equation with periodic coefficients”, Russ. J. Math. Phys., 13:2 (2006), 224–237 | MR | Zbl

[16] S. E. Pastukhova, “Operatornye otsenki v nelineinykh zadachakh povtornogo usredneniya”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 261, MAIK, M., 2008, 220–233 | MR

[17] S. E. Pastukhova, R. N. Tikhomirov, “Operatornye otsenki povtornogo i lokalno periodicheskogo usredneniya”, DAN, 415:3 (2007), 304–309 | MR | Zbl

[18] I. M. Gelfand, “Ralozhenie kharakteristicheskikh funktsii uravneniya s periodicheskimi koeffitsientami”, DAN SSSR, 73 (1950), 1117–1120 | MR | Zbl

[19] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[20] S. E. Pastukhova, “Ob approksimatsiyakh eksponenty operatora s periodicheskimi koeffitsientami”, Problemy matem. analiza, 63 (2012), 115–143 | MR | Zbl