Asymptotic Estimates of Functions Based on the Behavior of Their Laplace Transforms near Singular Points
Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 920-931.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the relationship between the behavior of a real function $\nu(t)$ as $t\to +\infty$ and the behavior of the Laplace transform $F[\nu](s)$ of the charge $d\nu(t)$, $$ F[\nu](s)=\int_0^{\infty}e^{-st}\,d\nu(t), $$ near its singular point.
Mots-clés : Laplace transform
Keywords: nonmonotone real function, oscillation of a function, Riemann zeta-function, Dirichlet integral, Tauberian theorem, charge, measure.
@article{MZM_2013_93_6_a9,
     author = {O. A. Petruschov},
     title = {Asymptotic {Estimates} of {Functions} {Based} on the {Behavior} of {Their} {Laplace} {Transforms} near {Singular} {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {920--931},
     publisher = {mathdoc},
     volume = {93},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a9/}
}
TY  - JOUR
AU  - O. A. Petruschov
TI  - Asymptotic Estimates of Functions Based on the Behavior of Their Laplace Transforms near Singular Points
JO  - Matematičeskie zametki
PY  - 2013
SP  - 920
EP  - 931
VL  - 93
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a9/
LA  - ru
ID  - MZM_2013_93_6_a9
ER  - 
%0 Journal Article
%A O. A. Petruschov
%T Asymptotic Estimates of Functions Based on the Behavior of Their Laplace Transforms near Singular Points
%J Matematičeskie zametki
%D 2013
%P 920-931
%V 93
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a9/
%G ru
%F MZM_2013_93_6_a9
O. A. Petruschov. Asymptotic Estimates of Functions Based on the Behavior of Their Laplace Transforms near Singular Points. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 920-931. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a9/

[1] D. V. Widder, The Laplace Transform, Princeton Math. Ser., 6, Prinston Univ. Press, Princeton, 1941 | MR | Zbl

[2] A. G. Postnikov, Vvedenie v analiticheskuyu teoriyu chisel, Nauka, M., 1971 | MR | Zbl

[3] I. Kátai, “On investigations in the comparative prime number theory”, Acta Math. Acad. Sci. Hungar., 18:3-4 (1967), 379–391 | DOI | MR | Zbl

[4] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR | Zbl

[5] A. M. Odlyzko, H. J. J. te Riele, “Disproof of the Mertens conjecture”, J. Reine Angew. Math., 357 (1985), 138–160 | MR | Zbl