Asymptotic Estimates of Functions Based on the Behavior of Their Laplace Transforms near Singular Points
Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 920-931
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper deals with the relationship between the behavior of a real function $\nu(t)$ as $t\to +\infty$ and the behavior of the Laplace transform $F[\nu](s)$ of the charge $d\nu(t)$,
$$
F[\nu](s)=\int_0^{\infty}e^{-st}\,d\nu(t),
$$
near its singular point.
Mots-clés :
Laplace transform
Keywords: nonmonotone real function, oscillation of a function, Riemann zeta-function, Dirichlet integral, Tauberian theorem, charge, measure.
Keywords: nonmonotone real function, oscillation of a function, Riemann zeta-function, Dirichlet integral, Tauberian theorem, charge, measure.
@article{MZM_2013_93_6_a9,
author = {O. A. Petruschov},
title = {Asymptotic {Estimates} of {Functions} {Based} on the {Behavior} of {Their} {Laplace} {Transforms} near {Singular} {Points}},
journal = {Matemati\v{c}eskie zametki},
pages = {920--931},
publisher = {mathdoc},
volume = {93},
number = {6},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a9/}
}
TY - JOUR AU - O. A. Petruschov TI - Asymptotic Estimates of Functions Based on the Behavior of Their Laplace Transforms near Singular Points JO - Matematičeskie zametki PY - 2013 SP - 920 EP - 931 VL - 93 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a9/ LA - ru ID - MZM_2013_93_6_a9 ER -
O. A. Petruschov. Asymptotic Estimates of Functions Based on the Behavior of Their Laplace Transforms near Singular Points. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 920-931. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a9/