Approximation of Periodic Functions Using $\mathrm{mup}_s(x)$
Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 878-901

Voir la notice de l'article provenant de la source Math-Net.Ru

The spaces of linear combinations of the shifts of a compactly supported solution of a functional-differential equation are considered. It is proved that they are asymptotically extremal for approximating, in the norm of $L_2$, functions from the classes $\widetilde{W}_2^r$.
Keywords: approximation of periodic functions, the classes $\widetilde{W}_2^r$, functional-differential equation, the function $mup_s(x)$, basis function, Taylor series, linear operator.
@article{MZM_2013_93_6_a7,
     author = {V. A. Makarichev},
     title = {Approximation of {Periodic} {Functions} {Using} $\mathrm{mup}_s(x)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {878--901},
     publisher = {mathdoc},
     volume = {93},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a7/}
}
TY  - JOUR
AU  - V. A. Makarichev
TI  - Approximation of Periodic Functions Using $\mathrm{mup}_s(x)$
JO  - Matematičeskie zametki
PY  - 2013
SP  - 878
EP  - 901
VL  - 93
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a7/
LA  - ru
ID  - MZM_2013_93_6_a7
ER  - 
%0 Journal Article
%A V. A. Makarichev
%T Approximation of Periodic Functions Using $\mathrm{mup}_s(x)$
%J Matematičeskie zametki
%D 2013
%P 878-901
%V 93
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a7/
%G ru
%F MZM_2013_93_6_a7
V. A. Makarichev. Approximation of Periodic Functions Using $\mathrm{mup}_s(x)$. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 878-901. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a7/