Approximation of Periodic Functions Using $\mathrm{mup}_s(x)$
Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 878-901.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spaces of linear combinations of the shifts of a compactly supported solution of a functional-differential equation are considered. It is proved that they are asymptotically extremal for approximating, in the norm of $L_2$, functions from the classes $\widetilde{W}_2^r$.
Keywords: approximation of periodic functions, the classes $\widetilde{W}_2^r$, functional-differential equation, the function $mup_s(x)$, basis function, Taylor series, linear operator.
@article{MZM_2013_93_6_a7,
     author = {V. A. Makarichev},
     title = {Approximation of {Periodic} {Functions} {Using} $\mathrm{mup}_s(x)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {878--901},
     publisher = {mathdoc},
     volume = {93},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a7/}
}
TY  - JOUR
AU  - V. A. Makarichev
TI  - Approximation of Periodic Functions Using $\mathrm{mup}_s(x)$
JO  - Matematičeskie zametki
PY  - 2013
SP  - 878
EP  - 901
VL  - 93
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a7/
LA  - ru
ID  - MZM_2013_93_6_a7
ER  - 
%0 Journal Article
%A V. A. Makarichev
%T Approximation of Periodic Functions Using $\mathrm{mup}_s(x)$
%J Matematičeskie zametki
%D 2013
%P 878-901
%V 93
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a7/
%G ru
%F MZM_2013_93_6_a7
V. A. Makarichev. Approximation of Periodic Functions Using $\mathrm{mup}_s(x)$. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 878-901. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a7/

[1] V. A. Rvachev, “O priblizhenii s pomoschyu funktsii $\mathrm{up}(x)$”, DAN SSSR, 233:2 (1977), 295–296 | MR | Zbl

[2] V. L. Rvachev, V. A. Rvachev, Neklassicheskie metody teorii priblizhenii v kraevykh zadachakh, Naukova dumka, K., 1979

[3] V. A. Rvachev, “Finitnye resheniya funktsionalno-differentsialnykh uravnenii i ikh primeneniya”, UMN, 45:1 (271) (1990), 77–103 | MR | Zbl

[4] A. Kolmogoroff, “Über die beste Annäherung von Funktionen einer gegebener Funktionenklasse”, Ann. of Math. (2), 37:1 (1936), 107–110 | DOI | MR | Zbl

[5] V. A. Rvachev, “Obobschennye ryady Teilora dlya beskonechno differentsiruemykh funktsii”, Matem. metody analiza dinamicheskikh sistem, 6 (1982), 99–102

[6] V. A. Rvachev, G. A. Starets, “Nekotorye atomarnye funktsii i ikh primenenie”, DAN USSR. Cer. A, 1983, no. 11, 22–24 | MR | Zbl

[7] G. A. Starets, “Skhodimost obobschennykh ryadov Teilora klassov $H_\rho(m)$”, Matem. metody analiza dinamicheskikh sistem, 9 (1985), 37–39

[8] G. A. Starets, Odin klass atomarnykh funktsii i ego primenenie, Dis. $\dots$ kand. fiz.-matem. nauk, Kharkovskii gos. un-t, Kharkov, 1985

[9] G. A. Starets, “Postroenie bazisnykh funktsii dlya obobschennykh ryadov Teilora”, Matem. metody analiza dinamicheskikh sistem, 8 (1984), 16–19

[10] V. A. Makarichev, “Ob asimptotike bazisnykh funktsii obobschennogo ryada Teilora dlya nekotorykh klassov beskonechno differentsiruemykh funktsii”, Dalnevost. matem. zhurn., 11:1 (2011), 56–75 | MR | Zbl

[11] N. Viner, R. Peli, Preobrazovanie Fure v kompleksnoi ploskosti, Nauka, M., 1964 | MR | Zbl