On the Conjugacy Problem in the Group $F/N_1\cap N_2$
Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 853-868.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $N_1$ ($N_2$) be the normal closure of a finite symmetrized set $R_1$ ($R_2$, respectively) in a finitely generated free group $F=F(A)$. As is known, if $R_i$ satisfies condition $C(6)$, then the conjugacy problem is decidable in $F/N_i$. In the paper, it is proved that, if one adds to condition $C(6)$ on the set $R_1\cup R_2$ the atoricity condition for the presentation $\langle A\mid R_1,R_2\rangle$, then the conjugacy problem is decidable in the group $F/N_1\cap N_2$ as well. In particular, for the decidability of the conjugacy problem in $F/N_1\cap N_2$, it is sufficient to assume that the set $R_1\cup R_2$ satisfies condition $C(7)$.
Keywords: conjugacy problem, finite symmetrized set in a free group, presentation, atoricity condition, subdirect product.
Mots-clés : condition $C(6)$, condition $C(7)$
@article{MZM_2013_93_6_a5,
     author = {O. V. Kulikova},
     title = {On the {Conjugacy} {Problem} in the {Group} $F/N_1\cap N_2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {853--868},
     publisher = {mathdoc},
     volume = {93},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a5/}
}
TY  - JOUR
AU  - O. V. Kulikova
TI  - On the Conjugacy Problem in the Group $F/N_1\cap N_2$
JO  - Matematičeskie zametki
PY  - 2013
SP  - 853
EP  - 868
VL  - 93
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a5/
LA  - ru
ID  - MZM_2013_93_6_a5
ER  - 
%0 Journal Article
%A O. V. Kulikova
%T On the Conjugacy Problem in the Group $F/N_1\cap N_2$
%J Matematičeskie zametki
%D 2013
%P 853-868
%V 93
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a5/
%G ru
%F MZM_2013_93_6_a5
O. V. Kulikova. On the Conjugacy Problem in the Group $F/N_1\cap N_2$. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 853-868. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a5/

[1] M. R. Bridson, C. F. Miller III, “Structure and finiteness properties of subdirect products of groups”, Proc. London Math. Soc. (3), 98:3 (2009), 631–651 | DOI | MR | Zbl

[2] C. F. Miller III, On Group-Theoretic Decision Problems and Their Classification, Ann. Math. Stud., 68, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl

[3] G. Baumslag, M. R. Bridson, C. F. Miller III, H. Short, “Fibre products, non-positive curvature, and decision problems”, Comment. Math. Helv., 75:3 (2000), 457–477 | DOI | MR | Zbl

[4] K. Igusa, The Generalized Grassmann Invariant, Preprint, Brandeis Univ., Waltham, MA, 1979

[5] C. P. Rourke, “Presentations and the trivial group”, Topology of Low-dimensional Manifolds, Lecture Notes in Math., 722, Springer-Verlag, Berlin, 1979, 134–143 | DOI | MR | Zbl

[6] S. J. Pride, “Identities among relations of group presentations”, Group Theory from a Geometrical Viewpoint, World Sci. Publ., River Edge, NJ, 1991, 687–717 | MR | Zbl

[7] W. A. Bogley, S. J. Pride, “Calculating Generators of $\pi_2$”, Two-dimensional Homotopy Theory and Combinatorial Group Theory, London Math. Soc. Lecture Note Ser., 197, Cambridge Univ. Press, Cambridge, 1993, 157–188 | MR | Zbl

[8] R. S. Lyndon, P. E. Schupp, Combinatorial Group Theory, Ergeb. Math. Grenzgeb., 89, Springer-Verlag, Berlin, 1977 | MR | Zbl

[9] A. Yu. Olshanskii, Geometriya opredelyayuschikh sootnoshenii v gruppakh, Sovremennaya algebra, Nauka, M., 1989 | MR | Zbl

[10] M. A. Gutiérrez, J. G. Ratcliffe, “On the second homotopy group”, Quart. J. Math. Oxford Ser. (2), 32:1 (1981), 45–55 | DOI | MR | Zbl

[11] O. V. Kulikova, “On intersections of normal subgroups in free groups”, Algebra Discrete Math., 2003, no. 1, 36–67 | MR | Zbl

[12] N. V. Bezverkhnii, “Razreshimost problemy vkhozhdeniya v tsiklicheskuyu podgruppu v gruppe s usloviem $C(6)$”, Fundament. i prikl. matem., 5:1 (1999), 39–46 | MR | Zbl

[13] W. A. Bogley, S. J. Pride, “Aspherical relative presentations”, Proc. Edinburgh Math. Soc. (2), 35:1 (1992), 1–39 | DOI | MR | Zbl