Real Four-Dimensional $\mathit{GM}$-Triquadrics
Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 844-852.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nonsingular intersections of three real six-dimensional quadrics are considered. Such algebraic varieties are referred to for brevity as real four-dimensional triquadrics. Necessary and sufficient conditions for a real four-dimensional triquadric to be a $\mathit{GM}$-variety are established.
Mots-clés : six-dimensional quadric, triquadric
Keywords: $\mathit{GM}$ variety, spectral curve, spectral bundle, index function, cohomology group, Stiefel–Whitney class.
@article{MZM_2013_93_6_a4,
     author = {V. A. Krasnov},
     title = {Real {Four-Dimensional} $\mathit{GM}${-Triquadrics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {844--852},
     publisher = {mathdoc},
     volume = {93},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a4/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - Real Four-Dimensional $\mathit{GM}$-Triquadrics
JO  - Matematičeskie zametki
PY  - 2013
SP  - 844
EP  - 852
VL  - 93
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a4/
LA  - ru
ID  - MZM_2013_93_6_a4
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T Real Four-Dimensional $\mathit{GM}$-Triquadrics
%J Matematičeskie zametki
%D 2013
%P 844-852
%V 93
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a4/
%G ru
%F MZM_2013_93_6_a4
V. A. Krasnov. Real Four-Dimensional $\mathit{GM}$-Triquadrics. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 844-852. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a4/

[1] V. A. Krasnov, “Veschestvennye chetyrekhmernye $M$-trikvadriki”, Matem. zametki, 92:6 (2012), 884–892 | DOI

[2] V. A. Krasnov, “Kharakteristicheskie klassy vektornykh rassloenii na veschestvennom algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 55:4 (1991), 716–746 | MR | Zbl

[3] A. Degtyarev, I. Itenberg, V. Kharlamov, On the Number of Components of a Complete Intersection of Real Quadrics, arXiv: 0806.4077v2

[4] V. A. Krasnov, “Veschestvennye algebraicheskie GM-mnogoobraziya”, Izv. RAN. Ser. matem., 62:3 (1998), 39–66 | DOI | MR | Zbl

[5] V. A. Krasnov, “Maksimalnye peresecheniya trekh veschestvennykh kvadrik”, Izv. RAN. Ser. matem., 75:3 (2011), 127–146 | DOI | MR | Zbl

[6] O. Ya. Viro, “Ploskie veschestvennye krivye stepenei 7 i 8: novye zaprety”, Izv. AN SSSR. Ser. matem., 47:5 (1983), 1135–1150 | MR | Zbl

[7] S. Yu. Orevkov, “Classification of flexible $M$-curves of degree 8 up to isotopy”, Geom. Funct. Anal., 12:4 (2002), 723–755 | MR | Zbl

[8] A. A. Agrachev, “Gomologii peresechenii veschestvennykh kvadrik”, DAN SSSR, 299:5 (1988), 1033–1036 | MR | Zbl