Quasiconformal Mappings of the Motion Group of the Plane
Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 947-950
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
quasiconformal mapping, motion group of the plane
Mots-clés : Carnot–Carathéodory metric.
Mots-clés : Carnot–Carathéodory metric.
@article{MZM_2013_93_6_a13,
author = {D. V. Isangulova},
title = {Quasiconformal {Mappings} of the {Motion} {Group} of the {Plane}},
journal = {Matemati\v{c}eskie zametki},
pages = {947--950},
year = {2013},
volume = {93},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a13/}
}
D. V. Isangulova. Quasiconformal Mappings of the Motion Group of the Plane. Matematičeskie zametki, Tome 93 (2013) no. 6, pp. 947-950. http://geodesic.mathdoc.fr/item/MZM_2013_93_6_a13/
[1] P. K. Rashevskii, Uch. zap. Mosk. gos. ped. in-ta im. K. Libknekhta. Ser. fiz.-matem., 2 (1938), 83–94
[2] L. Capogna, D. Danielli, S. D. Pauls, J. T. Tyson, An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Progr. Math., 259, Birkhäuser-Verlag, Basel, 2007 | MR | Zbl
[3] I. Moiseev, Yu. L. Sachkov, ESAIM Control Optim. Calc. Var., 16:2 (2010), 380–399 | DOI | MR | Zbl
[4] D. V. Isangulova, Vestn. Kemerovskogo gos. un-ta, 2011, no. 3/1 (47), 243–249
[5] A. Korányi, H. M. Reimann, Invent. math., 80:2 (1985), 309–338 | DOI | MR | Zbl
[6] S. K. Vodopyanov, The Interaction of Analysis and Geometry, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 247–301 | MR | Zbl