Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_93_5_a9, author = {K. K. Masutova and B. A. Omirov and A. Kh. Khudojberdyjev}, title = {Naturally {Graded} {Leibniz} {Algebras} with {Characteristic} {Sequence} $(n-m, m)$}, journal = {Matemati\v{c}eskie zametki}, pages = {746--763}, publisher = {mathdoc}, volume = {93}, number = {5}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a9/} }
TY - JOUR AU - K. K. Masutova AU - B. A. Omirov AU - A. Kh. Khudojberdyjev TI - Naturally Graded Leibniz Algebras with Characteristic Sequence $(n-m, m)$ JO - Matematičeskie zametki PY - 2013 SP - 746 EP - 763 VL - 93 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a9/ LA - ru ID - MZM_2013_93_5_a9 ER -
%0 Journal Article %A K. K. Masutova %A B. A. Omirov %A A. Kh. Khudojberdyjev %T Naturally Graded Leibniz Algebras with Characteristic Sequence $(n-m, m)$ %J Matematičeskie zametki %D 2013 %P 746-763 %V 93 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a9/ %G ru %F MZM_2013_93_5_a9
K. K. Masutova; B. A. Omirov; A. Kh. Khudojberdyjev. Naturally Graded Leibniz Algebras with Characteristic Sequence $(n-m, m)$. Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 746-763. http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a9/
[1] J. L. Loday, “Une version non commutative des algèbres de Lie: les algèbres de Leibniz”, Enseign. Math. (2), 39:3-4 (1993), 269–293 | MR | Zbl
[2] N. Dzhekobson, Algebry Li, Mir, M., 1964 | MR | Zbl
[3] A. I. Maltsev, “O razreshimykh algebrakh Li”, Izv. AN SSSR. Ser. matem., 9:5 (1945), 329–356 | MR | Zbl
[4] J. R. Gómez, A. Jiménez-Merchán, “Naturally graded quasi-filiform Lie algebras”, J. Algebra, 256:1 (2002), 211–228 | DOI | MR | Zbl
[5] J. R. Gómez, A. Jiménez-Merchán, J. Reyes, “Maximum length filiform Lie algebras”, Exstracta Math., 16:3 (2001), 405–421 | MR | Zbl
[6] M. Goze, Y. Khakimdjanov, Nilpotent Lie Algebras, Math. Appl., 361, Kluwer Academic Publ., Dordrecht, 1996 | MR | Zbl
[7] Sh. A. Ayupov, B. A. Omirov, “O nekotorykh klassakh nilpotentnykh algebr Leibnitsa”, Sib. matem. zhurn., 42:1 (2001), 18–29 | MR | Zbl
[8] Sh. A. Ayupov, B. A. Omirov, “On Leibniz qlgebras”, Algebra and Operators Theory (Tashkent, 1997), Kluwer Academic Publ., Dordrecht, 1998, 1–12 | MR | Zbl
[9] L. M. Camacho, J. R. Gómez, A. R. González, B. A. Omirov, “Naturally graded quasi-filiform Leibniz algebras”, J. Symbolic Comput., 44:5 (2009), 527–539 | DOI | MR | Zbl
[10] L. M. Camacho, J. R. Gómez, A. J. González, B. A. Omirov, “The classification of naturally graded $p$-filiform Leibniz algebras”, Comm. Algebra, 39:1 (2011), 153–168 | MR | Zbl
[11] A. O. Gelfond, Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR | Zbl
[12] J. M. Cabezas, L. M. Camacho, J. R. Gómez, B. A. Omirov, “A class of Leibniz algebras in arbitrary finite dimension”, 2010 (to appear)