Stability of Solutions of Pseudolinear Differential Equations with Impulse Action
Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 702-715.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we develop a new approach to constructing piecewise differentiable Lyapunov functions for certain classes of nonlinear differential equations with impulse action. This approach is based on the method of “frozen” coefficients, and the required function is constructed as a pseudoquadratic form. For the case under consideration, stability conditions in the sense of Lyapunov are obtained. The proposed approach can be used to study the stability of the critical equilibrium states of systems of differential equations with impulse action.
Keywords: pseudodifferential equation with impulse action, Lyapunov stability of solutions of differential equations, critical equilibrium state, method of “frozen” coefficients.
Mots-clés : pseudoquadratic form
@article{MZM_2013_93_5_a4,
     author = {A. I. Dvirnyj and V. I. Slyn'ko},
     title = {Stability of {Solutions} of {Pseudolinear} {Differential} {Equations} with {Impulse} {Action}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {702--715},
     publisher = {mathdoc},
     volume = {93},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a4/}
}
TY  - JOUR
AU  - A. I. Dvirnyj
AU  - V. I. Slyn'ko
TI  - Stability of Solutions of Pseudolinear Differential Equations with Impulse Action
JO  - Matematičeskie zametki
PY  - 2013
SP  - 702
EP  - 715
VL  - 93
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a4/
LA  - ru
ID  - MZM_2013_93_5_a4
ER  - 
%0 Journal Article
%A A. I. Dvirnyj
%A V. I. Slyn'ko
%T Stability of Solutions of Pseudolinear Differential Equations with Impulse Action
%J Matematičeskie zametki
%D 2013
%P 702-715
%V 93
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a4/
%G ru
%F MZM_2013_93_5_a4
A. I. Dvirnyj; V. I. Slyn'ko. Stability of Solutions of Pseudolinear Differential Equations with Impulse Action. Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 702-715. http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a4/

[1] A. M. Samoilenko, N. A. Perestyuk, Differentsialnye uravneniya s impulsnym vozdeistviem, Vischa shkola, Kiev, 1987

[2] A. I. Dvirnyi, V. I. Slynko, “Ob ustoichivosti reshenii nestatsionarnykh sistem differentsialnykh uravnenii s impulsnym vozdeistviem v odnom kriticheskom sluchae”, Nelineinye kolebaniya, 14:4 (2011), 445–467 | MR

[3] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of Impulsive Differential Equations, Ser. Modern Appl. Math., 6, World Sci., Singapore, 1989 | MR | Zbl

[4] A. O. Ignatev, “Ob asimptoticheskoi ustoichivosti i neustoichivosti otnositelno chasti peremennykh reshenii sistem s impulsnym vozdeistviem”, Sib. matem. zhurn., 49:1 (2008), 125–133 | MR | Zbl

[5] R. I. Gladilina, A. O. Ignatev, “O neobkhodimykh i dostatochnykh usloviyakh ustoichivosti invariantnykh mnozhestv nelineinykh impulsnykh sistem”, Prikladnaya mekhanika, 44:2 (2008), 132–142 | Zbl

[6] L. G. Khazin, E. E. Shnol, Ustoichivost kriticheskikh polozhenii ravnovesiya, Izd-vo NTsBI AN SSSR, Puschino, 1985 | MR | Zbl

[7] V. I. Arnold, Yu. S. Ilyashenko, “Obyknovennye differentsialnye uravneniya”, Dinamicheskie sistemy – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 1, VINITI, M., 1985, 7–140 | MR | Zbl

[8] O. C. Chernikova, “Printsip svedeniya dlya sistem differentsialnykh uravnenii s impulsnym vozdeistviem”, Ukr. matem. zhurn., 34:5 (1982), 601–607 | MR | Zbl

[9] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR | Zbl

[10] A. I. Dvirnyi, V. I. Slynko, “Ustoichivost reshenii differentsialnykh uravnenii s impulsnym vozdeistviem v kriticheskikh sluchayakh”, Sib. matem. zhurn., 52:1 (2011), 70–80 | MR