Modeling the Bursting Effect in Neuron Systems
Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 684-701

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new method for modeling the well-known phenomenon of “bursting behavior” in neuron systems by invoking delay equations. Namely, we consider a singularly perturbed nonlinear difference-differential equation with two delays describing the functioning of an isolated neuron. Under a suitable choice of parameters, we establish the existence of a stable periodic motion with any prescribed number of spikes on a closed time interval equal to the period length.
Keywords: “bursting behavior” in neuron systems, difference-differential equation, relay equation, Cauchy problem, Schauder principle, relaxation cycle, spiking, stability.
@article{MZM_2013_93_5_a3,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Modeling the {Bursting} {Effect} in {Neuron} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {684--701},
     publisher = {mathdoc},
     volume = {93},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a3/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Modeling the Bursting Effect in Neuron Systems
JO  - Matematičeskie zametki
PY  - 2013
SP  - 684
EP  - 701
VL  - 93
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a3/
LA  - ru
ID  - MZM_2013_93_5_a3
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Modeling the Bursting Effect in Neuron Systems
%J Matematičeskie zametki
%D 2013
%P 684-701
%V 93
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a3/
%G ru
%F MZM_2013_93_5_a3
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Modeling the Bursting Effect in Neuron Systems. Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 684-701. http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a3/