Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_93_5_a12, author = {M. E. Shirokov}, title = {Schmidt {Number} and {Partially} {Entanglement-Breaking} {Channels} in {Infinite-Dimensional} {Quantum} {Systems}}, journal = {Matemati\v{c}eskie zametki}, pages = {775--789}, publisher = {mathdoc}, volume = {93}, number = {5}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a12/} }
TY - JOUR AU - M. E. Shirokov TI - Schmidt Number and Partially Entanglement-Breaking Channels in Infinite-Dimensional Quantum Systems JO - Matematičeskie zametki PY - 2013 SP - 775 EP - 789 VL - 93 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a12/ LA - ru ID - MZM_2013_93_5_a12 ER -
M. E. Shirokov. Schmidt Number and Partially Entanglement-Breaking Channels in Infinite-Dimensional Quantum Systems. Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 775-789. http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a12/
[1] B. M. Terhal, P. Horodecki, “Schmidt number for density matrices”, Phys. Rev. A, 61:4 (2000), 040301 | DOI | MR
[2] A. Sanpera, D. Bruß, M. Lewenstein, “Schmidt-number witnesses and bound entanglement”, Phys. Rev. A, 63:5 (2001), 050301 | DOI
[3] J. Sperling, W. Vogel, “The Schmidt number as a universal entanglement measure”, Phys. Scr., 83:4 (2011), 045002 | DOI | Zbl
[4] J. Sperling, W. Vogel, “Determination of the Schmidt number”, Phys. Rev. A, 83:4 (2011), 042315 | DOI
[5] D. Chruściński, A. Kossakowski, “On partially entanglement breaking channels”, Open Syst. Inf. Dyn., 13:1 (2006), 17–26 | DOI | MR | Zbl
[6] M. E. Shirokov, Monotonicity of the Holevo Quantity: A Necessary Condition for Equality in Terms of a Channel, 2011, arXiv: 1106.3297
[7] R. F. Verner, A. S. Kholevo, M. E. Shirokov, “O ponyatii stseplennosti v gilbertovykh prostranstvakh”, UMN, 60:2 (2005), 153–154, arXiv: quant-ph/0504204 | DOI | MR | Zbl
[8] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1974 | MR | Zbl
[9] C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, Springer-Verlag, Berlin, 1978 | MR | Zbl
[10] R. T. Rockafellar, Convex Analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, NJ, 1970 | MR | Zbl
[11] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR | Zbl
[12] K. R. Parthasarathy, Probability Measures on Metric Spaces, Probab. Math. Stat., 3, Academic Press, New York, 1967 | MR | Zbl
[13] A. S. Kholevo, Statisticheskaya struktura kvantovoi teorii, IKI, Izhevsk, 2003
[14] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[15] M. B. Plenio, S. Virmani, “An introduction to entanglement measures”, Quantum Inf. Comput., 7:1-2 (2007), 1–51 | MR | Zbl
[16] M. E. Shirokov, “Svoistva prostranstva kvantovykh sostoyanii i monotonnye kharakteristiki stseplennosti”, Izv. RAN. Ser. matem., 74:4 (2010), 189–224 | DOI | MR | Zbl
[17] M. E.Shirokov, A. S. Kholevo, “Ob approksimatsii beskonechnomernykh kvantovykh kanalov”, Probl. peredachi inform., 44:2 (2008), 3–22 | MR
[18] M. Horodecki, P. W. Shor, M. B. Ruskai, “Entanglement breaking channels”, Rev. Math. Phys., 15:6 (2003), 629–641 | DOI | MR | Zbl