Schmidt Number and Partially Entanglement-Breaking Channels in Infinite-Dimensional Quantum Systems
Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 775-789.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Schmidt number of a state of an infinite-dimensional composite quantum system is defined and several properties of the corresponding Schmidt classes are considered. It is shown that there are states with given Schmidt number such that any of their countable convex decompositions does not contain pure states of finite Schmidt rank. The classes of infinite-dimensional partially entanglement-breaking channels are considered, and generalizations of several properties of such channels, which were obtained earlier in the finite-dimensional case, are proved. At the same time, it is shown that there are partially entanglement-breaking channels (in particular, entanglement-breaking channels) such that all of their operators in any Kraus representation are of infinite rank.
Keywords: Schmidt number, Schmidt rank, composite quantum system, quantum channel, Schmidt decomposition, partially entanglement-breaking channels.
Mots-clés : entanglement
@article{MZM_2013_93_5_a12,
     author = {M. E. Shirokov},
     title = {Schmidt {Number} and {Partially} {Entanglement-Breaking} {Channels} in {Infinite-Dimensional} {Quantum} {Systems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {775--789},
     publisher = {mathdoc},
     volume = {93},
     number = {5},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a12/}
}
TY  - JOUR
AU  - M. E. Shirokov
TI  - Schmidt Number and Partially Entanglement-Breaking Channels in Infinite-Dimensional Quantum Systems
JO  - Matematičeskie zametki
PY  - 2013
SP  - 775
EP  - 789
VL  - 93
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a12/
LA  - ru
ID  - MZM_2013_93_5_a12
ER  - 
%0 Journal Article
%A M. E. Shirokov
%T Schmidt Number and Partially Entanglement-Breaking Channels in Infinite-Dimensional Quantum Systems
%J Matematičeskie zametki
%D 2013
%P 775-789
%V 93
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a12/
%G ru
%F MZM_2013_93_5_a12
M. E. Shirokov. Schmidt Number and Partially Entanglement-Breaking Channels in Infinite-Dimensional Quantum Systems. Matematičeskie zametki, Tome 93 (2013) no. 5, pp. 775-789. http://geodesic.mathdoc.fr/item/MZM_2013_93_5_a12/

[1] B. M. Terhal, P. Horodecki, “Schmidt number for density matrices”, Phys. Rev. A, 61:4 (2000), 040301 | DOI | MR

[2] A. Sanpera, D. Bruß, M. Lewenstein, “Schmidt-number witnesses and bound entanglement”, Phys. Rev. A, 63:5 (2001), 050301 | DOI

[3] J. Sperling, W. Vogel, “The Schmidt number as a universal entanglement measure”, Phys. Scr., 83:4 (2011), 045002 | DOI | Zbl

[4] J. Sperling, W. Vogel, “Determination of the Schmidt number”, Phys. Rev. A, 83:4 (2011), 042315 | DOI

[5] D. Chruściński, A. Kossakowski, “On partially entanglement breaking channels”, Open Syst. Inf. Dyn., 13:1 (2006), 17–26 | DOI | MR | Zbl

[6] M. E. Shirokov, Monotonicity of the Holevo Quantity: A Necessary Condition for Equality in Terms of a Channel, 2011, arXiv: 1106.3297

[7] R. F. Verner, A. S. Kholevo, M. E. Shirokov, “O ponyatii stseplennosti v gilbertovykh prostranstvakh”, UMN, 60:2 (2005), 153–154, arXiv: quant-ph/0504204 | DOI | MR | Zbl

[8] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1974 | MR | Zbl

[9] C. D. Aliprantis, K. C. Border, Infinite Dimensional Analysis. A Hitchhiker's Guide, Springer-Verlag, Berlin, 1978 | MR | Zbl

[10] R. T. Rockafellar, Convex Analysis, Princeton Math. Ser., 28, Princeton Univ. Press, Princeton, NJ, 1970 | MR | Zbl

[11] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR | Zbl

[12] K. R. Parthasarathy, Probability Measures on Metric Spaces, Probab. Math. Stat., 3, Academic Press, New York, 1967 | MR | Zbl

[13] A. S. Kholevo, Statisticheskaya struktura kvantovoi teorii, IKI, Izhevsk, 2003

[14] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl

[15] M. B. Plenio, S. Virmani, “An introduction to entanglement measures”, Quantum Inf. Comput., 7:1-2 (2007), 1–51 | MR | Zbl

[16] M. E. Shirokov, “Svoistva prostranstva kvantovykh sostoyanii i monotonnye kharakteristiki stseplennosti”, Izv. RAN. Ser. matem., 74:4 (2010), 189–224 | DOI | MR | Zbl

[17] M. E.Shirokov, A. S. Kholevo, “Ob approksimatsii beskonechnomernykh kvantovykh kanalov”, Probl. peredachi inform., 44:2 (2008), 3–22 | MR

[18] M. Horodecki, P. W. Shor, M. B. Ruskai, “Entanglement breaking channels”, Rev. Math. Phys., 15:6 (2003), 629–641 | DOI | MR | Zbl