Optimal Control of Nonlinear Evolution Systems in the Case where the Solution is not Differentiable with Respect to the Control
Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 586-603

Voir la notice de l'article provenant de la source Math-Net.Ru

For the simplest heat equation with power nonlinearity, the dependence of the solution of the corresponding boundary-value problem on the constant term of the equation turns out to be, in general, not differentiable in the sense of Gâteaux.
Keywords: optimal control, nonlinear evolution system, heat equation with power nonlinearity, Gâteaux differentiability, Lagrange optimality principle.
@article{MZM_2013_93_4_a9,
     author = {S. Ya. Serovaǐskiǐ},
     title = {Optimal {Control} of {Nonlinear} {Evolution} {Systems} in the {Case} where the {Solution} is not {Differentiable} with {Respect} to the {Control}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {586--603},
     publisher = {mathdoc},
     volume = {93},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a9/}
}
TY  - JOUR
AU  - S. Ya. Serovaǐskiǐ
TI  - Optimal Control of Nonlinear Evolution Systems in the Case where the Solution is not Differentiable with Respect to the Control
JO  - Matematičeskie zametki
PY  - 2013
SP  - 586
EP  - 603
VL  - 93
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a9/
LA  - ru
ID  - MZM_2013_93_4_a9
ER  - 
%0 Journal Article
%A S. Ya. Serovaǐskiǐ
%T Optimal Control of Nonlinear Evolution Systems in the Case where the Solution is not Differentiable with Respect to the Control
%J Matematičeskie zametki
%D 2013
%P 586-603
%V 93
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a9/
%G ru
%F MZM_2013_93_4_a9
S. Ya. Serovaǐskiǐ. Optimal Control of Nonlinear Evolution Systems in the Case where the Solution is not Differentiable with Respect to the Control. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 586-603. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a9/