Optimal Control of Nonlinear Evolution Systems in the Case where the Solution is not Differentiable with Respect to the Control
Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 586-603
Voir la notice de l'article provenant de la source Math-Net.Ru
For the simplest heat equation with power nonlinearity, the dependence of the solution of the corresponding boundary-value problem on the constant term of the equation turns out to be, in general, not differentiable in the sense of Gâteaux.
Keywords:
optimal control, nonlinear evolution system, heat equation with power nonlinearity, Gâteaux differentiability, Lagrange optimality principle.
@article{MZM_2013_93_4_a9,
author = {S. Ya. Serovaǐskiǐ},
title = {Optimal {Control} of {Nonlinear} {Evolution} {Systems} in the {Case} where the {Solution} is not {Differentiable} with {Respect} to the {Control}},
journal = {Matemati\v{c}eskie zametki},
pages = {586--603},
publisher = {mathdoc},
volume = {93},
number = {4},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a9/}
}
TY - JOUR AU - S. Ya. Serovaǐskiǐ TI - Optimal Control of Nonlinear Evolution Systems in the Case where the Solution is not Differentiable with Respect to the Control JO - Matematičeskie zametki PY - 2013 SP - 586 EP - 603 VL - 93 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a9/ LA - ru ID - MZM_2013_93_4_a9 ER -
%0 Journal Article %A S. Ya. Serovaǐskiǐ %T Optimal Control of Nonlinear Evolution Systems in the Case where the Solution is not Differentiable with Respect to the Control %J Matematičeskie zametki %D 2013 %P 586-603 %V 93 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a9/ %G ru %F MZM_2013_93_4_a9
S. Ya. Serovaǐskiǐ. Optimal Control of Nonlinear Evolution Systems in the Case where the Solution is not Differentiable with Respect to the Control. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 586-603. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a9/