Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_93_4_a9, author = {S. Ya. Serovaǐskiǐ}, title = {Optimal {Control} of {Nonlinear} {Evolution} {Systems} in the {Case} where the {Solution} is not {Differentiable} with {Respect} to the {Control}}, journal = {Matemati\v{c}eskie zametki}, pages = {586--603}, publisher = {mathdoc}, volume = {93}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a9/} }
TY - JOUR AU - S. Ya. Serovaǐskiǐ TI - Optimal Control of Nonlinear Evolution Systems in the Case where the Solution is not Differentiable with Respect to the Control JO - Matematičeskie zametki PY - 2013 SP - 586 EP - 603 VL - 93 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a9/ LA - ru ID - MZM_2013_93_4_a9 ER -
%0 Journal Article %A S. Ya. Serovaǐskiǐ %T Optimal Control of Nonlinear Evolution Systems in the Case where the Solution is not Differentiable with Respect to the Control %J Matematičeskie zametki %D 2013 %P 586-603 %V 93 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a9/ %G ru %F MZM_2013_93_4_a9
S. Ya. Serovaǐskiǐ. Optimal Control of Nonlinear Evolution Systems in the Case where the Solution is not Differentiable with Respect to the Control. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 586-603. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a9/
[1] N. U. Ahmed, K. L. Teo, “Optimal control of systems governed by a class of nonlinear evolution equations in a reflexive Banach space”, J. Optim. Theory Appl., 25:1 (1978), 57–81 | DOI | MR | Zbl
[2] N. U. Ahmed, “Properties of relaxed trajectories for a class of nonlinear evolution equations on a Banach space”, SIAM J. Contr. Optim., 21:6 (1983), 953–967 | DOI | MR | Zbl
[3] D. Tiba, “Optimality conditions for nonlinear distributed control problems”, Proceedings of the 22nd IEEE Conference on Decision and Control, 1983, 1251–1252 | DOI
[4] D. Tiba, “Optimality conditions for distributed control problems with nonlinear state equation”, SIAM J. Control Optim., 23:1 (1985), 85–110 | DOI | MR | Zbl
[5] V. S. Melnik, “Ekstremalnye zadachi dlya evolyutsionnykh uravnenii s operatornymi ogranicheniyami”, DAN USSR. Ser. A. Fiz.-matem. i tekhn. nauki, 1989, no. 3, 76–79 | MR | Zbl
[6] X. Li, J. Yong, “Necessary conditions for optimal control of distributed parameter systems”, SIAM J. Control Optim., 29:4 (1991), 895–908 | DOI | MR | Zbl
[7] Yu. G. Borisovich, V. V. Obukhovskii, “O zadache optimizatsii dlya upravlyaemykh sistem parabolicheskogo tipa”, Optimalnoe upravlenie i differentsialnye uravneniya, Sbornik statei. K semidesyatiletiyu so dnya rozhdeniya akademika Evgeniya Frolovicha Mischenko, Tr. MIAN, 211, Nauka, Fizmatlit, M., 1995, 95–101 | MR | Zbl
[8] A. Fiacca, N. Papageorgiou, P. Papalini, “On the existence of optimal controls for nonlinear infinite dimensional systems”, Czechoslovak Math. J., 48:2 (1998), 291–312 | DOI | MR | Zbl
[9] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR | Zbl
[10] Zh. Sea, Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973 | MR | Zbl
[11] Zh.-L. Lions, Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972 | MR | Zbl
[12] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977 | MR
[13] A. D. Ioffe, V. M. Tikhomirov, Teoriya ekstremalnykh zadach, Nelineinyi analiz i ego prilozheniya, Nauka, M., 1974 | MR | Zbl
[14] A. V. Fursikov, Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Universitetskaya seriya, 5, Nauchnaya kniga, Novosibirsk, 1999 | Zbl
[15] Zh.-L. Lions, Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987 | MR | Zbl
[16] V. Barbu, Analysis and Control of Nonlinear Infinite Dimensional Systems, Math. Sci. Engrg., 190, Academic Press, Boston, MA, 1993 | MR | Zbl
[17] P. Neittaanmäki, D. Tiba, Optimal Control of Nonlinear Parabolic Systems. Theory, Algorithms, and Applications, Monogr. Textbooks Pure Appl. Math., 179, Marcel Dekker, New York, 1994 | MR | Zbl
[18] A. Friedman, “Nonlinear optimal control problems for parabolic equations”, SIAM J. Control Optim., 22:5 (1984), 805–816 | DOI | MR | Zbl
[19] N. U. Ahmed, X. Xiang, “Nonlinear boundary control of semilinear partial systems”, SIAM J. Control Optim., 34:2 (1996), 473–490 | DOI | MR | Zbl
[20] J. P. Raymond, H. Zidani, “Pontryagin's principle for state-constrained control problems governed by parabolic equations wirg unbounded controls”, SIAM J. Control Optim., 36:6 (1998), 1853–1879 | DOI | MR | Zbl
[21] Z. Liu, “On the identification of coefficients of semilinear parabolic equations”, Acta Math. Appl. Sinica (English Ser.), 10:4 (1999), 356–367 | DOI | MR | Zbl
[22] F. Tröltzsch, “On the Lagrange–Newton–SQP method for the optimal control of semilinear parabolic equations”, SIAM J. Control Optim., 38:1 (1999), 294–312 | DOI | MR | Zbl
[23] M. D. Voisei, “First-order necessary conditions of optimality for strongly monotone nonlinear control problems”, J. Optim. Theory Appl., 116:2 (2003), 421–436 | DOI | MR | Zbl
[24] S. Ya. Serovaiskii, “Differentsirovanie obratnoi funktsii v nenormirovannykh prostranstvakh”, Funkts. analiz i ego pril., 27:4 (1993), 84–87 | MR | Zbl
[25] S. Ya. Serovajsky, “Calculation of functional gradients and extended differentiation of operators”, J. Inverse Ill-Posed Probl., 13:4 (2005), 383–396 | DOI | MR | Zbl
[26] Zh.-P. Oben, I. Ekland, Prikladnoi nelineinyi analiz, Mir, M., 1988 | MR | Zbl
[27] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl
[28] R. T. Rockafellar, La théorie des sous gradients et ses applications à l'optimisation. Fonctions convexes et non convexes, Collection de la Chaire Aisenstadt, Les Presses de l'Université de Montréal, Montreal, 1978 | MR | Zbl
[29] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR | Zbl
[30] F. H. Clarke, “Generalized gradients and applications”, Trans. Amer. Math. Soc., 205 (1975), 247–262 | DOI | MR | Zbl
[31] F. Klark, Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl
[32] V. F. Demyanov, A. M. Rubinov, Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Optimizatsiya i issledovanie operatsii, 23, Nauka, M., 1990 | MR | Zbl
[33] A. V. Razgulin, “O parabolicheskikh funktsionalno-differentsialnykh uravneniyakh s upravlyaemym preobrazovaniem prostranstvennykh peremennykh”, DAN, 403:4 (2005), 448–451 | MR | Zbl
[34] A. V. Razgulin, “Zadacha upravleniya dvumernym preobrazovaniem prostranstvennykh argumentov v parabolicheskom funktsuionalno-differentsialnom uravneniya”, Differents. uravneniya, 42:8 (2006), 1078–1091 | MR | Zbl
[35] Funktsionalnyi analiz, ed. S. G. Krein, Nauka, M., 1972 | MR | Zbl