On the Regularization of a Multidimensional Integral Equation in Lebesgue Spaces with Variable Exponent
Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 575-585.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multidimensional integral equation of the first kind with potential-type kernel of small order in spaces of summable functions of variable order is reduced to an equation of the second kind.
Keywords: multidimensional integral equation of the first (second) kind, regularization of an integral equation, Banach space, hypersingular operator, Hölder's inequality, Hardy–Stein–Weiss inequality.
Mots-clés : Lebesgue space with variable exponent
@article{MZM_2013_93_4_a8,
     author = {S. G. Samko and S. M. Umarkhadzhiev},
     title = {On the {Regularization} of a {Multidimensional} {Integral} {Equation} in {Lebesgue} {Spaces} with {Variable} {Exponent}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {575--585},
     publisher = {mathdoc},
     volume = {93},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a8/}
}
TY  - JOUR
AU  - S. G. Samko
AU  - S. M. Umarkhadzhiev
TI  - On the Regularization of a Multidimensional Integral Equation in Lebesgue Spaces with Variable Exponent
JO  - Matematičeskie zametki
PY  - 2013
SP  - 575
EP  - 585
VL  - 93
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a8/
LA  - ru
ID  - MZM_2013_93_4_a8
ER  - 
%0 Journal Article
%A S. G. Samko
%A S. M. Umarkhadzhiev
%T On the Regularization of a Multidimensional Integral Equation in Lebesgue Spaces with Variable Exponent
%J Matematičeskie zametki
%D 2013
%P 575-585
%V 93
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a8/
%G ru
%F MZM_2013_93_4_a8
S. G. Samko; S. M. Umarkhadzhiev. On the Regularization of a Multidimensional Integral Equation in Lebesgue Spaces with Variable Exponent. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 575-585. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a8/

[1] S. M. Umarkhadzhiev, Mnogomernye integralnye uravneniya pervogoroda s yadrom tipa potentsiala, Dep. v VINITI No1743-81, Rostovskii gos. un-t, 1981

[2] S. M. Umarkhadzhiev, Issledovanie mnogomernykh operatorov tipa potentsiala s nepreryvnymi i razryvnymi kharakteristikami, Dis. $\dots$ kand. fiz.-matem. nauk, Rostovskii gos. un-t, 1982

[3] S. G. Samko, Hypersingular Integrals and their Applications, Anal. Methods Spec. Funct., 5, Taylor Francis, London, 2002 | MR | Zbl

[4] I. I. Sharapudinov, “O topologii prostranstva $\mathscr L^{p(t)}([0,1])$”, Matem. zametki, 26:4 (1979), 613–632 | MR | Zbl

[5] O. Kováčik, J. Rákosník, “On spaces $L^{p(x)}$ and $W^{k,p(x)}$”, Czechoslovak Math. J., 41(116):4 (1991), 592–618 | MR | Zbl

[6] L. Diening, M. R{u}žička, “Calderón–Zygmund operators on generalized Lebesgue spaces ${L}^{p(\,\cdot\,)}$ and problems related to fluid dynamics”, J. Reine Angew. Math., 563 (2003), 197–220 | MR | Zbl

[7] M. R{u}žička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., 1748, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[8] V. V. Zhikov, “Usrednenie funktsionalov variatsionnogo ischisleniya i teorii uprugosti”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 675–710 | MR | Zbl

[9] L. Diening, P. Hästö, A. Nekvinda, “Open problems in variable exponent Lebesgue and Sobolev spaces”, Function Spaces, Differential Operators and Nonlinear Analysis (Bohemian-Moravian Uplands, May 28–June 2, 2004), Math. Inst. Acad. Sci. Czech Republick, Prague, 2005, 38–58

[10] V. Kokilashvili, “On a progress in the theory of integral operators in weighted Banach function spaces”, Function Spaces, Differential Operators and Nonlinear Analysis (Bohemian-Moravian Uplands, May 28–June 2, 2004), Math. Inst. Acad. Sci. Czech Republick, Prague, 2005, 152–175

[11] V. Kokilashvili, S. Samko, “Weighted boundedness of the maximal, singular and potential operators in variable exponent spaces”, Analytic Methods of Analysis and Differential Equations, Cambridge Sci. Publ., Cambridge, 2008, 139–164 | MR

[12] S. Samko, “On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators”, Integral Transforms Spec. Funct., 16:5-6 (2005), 461–482 | MR | Zbl

[13] X. Fan, D. Zhao, “On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$”, J. Math. Anal. Appl., 263:2 (2001), 424–446 | MR | Zbl

[14] S. G. Samko, “Differentiation and integration of variable order and the spaces ${L}^{p(x)}$”, Operator Theory and Complex and Hypercomplex Analysis (Mexico City, December 12–17, 1994), Contemp. Math., 212, Amer. Math. Soc., Providence, RI, 1998, 203–219 | MR | Zbl

[15] M. A. Krasnoselskii, “O teoreme M. Rissa”, DAN SSSR, 131 (1960), 246–248 | MR | Zbl

[16] F. Cobos, T. Kühn, T. Schonbek, “One-sided compactness results for Aronsjain–Gagliardo functors”, J. Funct. Anal., 106:2 (1992), 274–313 | MR | Zbl

[17] M. Cwikel, “Real and complex interpolation and extrapolation of compact operators”, Duke Math. J., 65:2 (1992), 333–343 | MR | Zbl

[18] K. Hayakawa, “Interpolation by the real method preserves compactness of operators”, J. Math. Soc. Japan, 21 (1969), 189–199 | MR | Zbl

[19] J.-L. Lions, J. Peetre, “Sur une classe d'espaces d'interpolation”, Inst. Hautes Études Sci. Publ. Math., 19 (1964), 5–66 | MR | Zbl

[20] A. Persson, “Compact linear mappings between interpolation spaces”, Ark. Mat., 5 (1964), 215–219 | MR | Zbl

[21] V. Rabinovich, S. Samko, “Boundedness and Fredholmness of pseudodifferential operators in variable exponent spaces”, Integral Equations Operator Theory, 60:4 (2008), 507–537 | MR | Zbl

[22] S. Samko, “On compactness of operators in variable exponent Lebesgue spaces”, Topics in Operator Theory, Vol. 1, Oper. Theory Adv. Appl., 202, Birkhäuser Verlag, Basel, 2010, 497–507 | MR | Zbl

[23] S. G. Samko, “Hardy inequality in the generalized Lebesgue spaces”, Fract. Calc. Appl. Anal., 6:4 (2003), 355–362 | MR | Zbl

[24] V. Kokilashvili, S. Samko, “The maximal operator in weighted variable exponent spaces on metric spaces”, Georgian Math. J., 15:4 (2008), 683–712 | MR | Zbl

[25] S. Samko, E. Shargorodsky, B. Vakulov, “Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators. II”, J. Math. Anal. Appl., 325:1 (2007), 745–751 | MR | Zbl

[26] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, C. Perez, “The boundedness of classical operators on variable $L^p$ spaces”, Ann. Acad. Sci. Fenn. Math., 31:1 (2006), 239–264 | MR | Zbl

[27] A. Almeida, “Inversion of the Riesz potential operator on Lebesgue spaces with variable exponent”, Frac. Calc. Appl. Anal., 6:3 (2003), 311–327 | MR | Zbl

[28] A. Almeida, S. Samko, “Characterization of Riesz and Bessel potentials on variable Lebesgue spaces”, J. Funct. Spaces Appl., 4:2 (2006), 113–144 | MR | Zbl