Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_93_4_a7, author = {S. S. Marchenkov}, title = {Interpolation and {Superpositions} of {Multivariate} {Continuous} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {566--574}, publisher = {mathdoc}, volume = {93}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a7/} }
S. S. Marchenkov. Interpolation and Superpositions of Multivariate Continuous Functions. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 566-574. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a7/
[1] A. G. Vitushkin, “K trinadtsatoi probleme Gilberta”, DAN SSSR, 95:4 (1954), 701–704 | MR | Zbl
[2] A. G. Vitushkin, O mnogomernykh variatsiyakh, Gostekhizdat, M., 1955 | MR
[3] A. N. Kolmogorov, “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh superpozitsiyami nepreryvnykh funktsii menshego chisla peremennykh”, DAN SSSR, 108:2 (1956), 179–182 | MR | Zbl
[4] A. N. Kolmogorov, “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh v vide superpozitsii nepreryvnykh funktsii odnogo peremennogo i slozheniya”, DAN SSSR, 114:5 (1957), 953–956 | MR | Zbl
[5] V. I. Arnold, “O funktsiyakh trekh peremennykh”, DAN SSSR, 114:4 (1957), 679–681 | MR | Zbl
[6] A. G. Vitushkin, G. M. Khenkin, “Lineinye superpozitsii funktsii”, UMN, 22:1(133) (1967), 77–124 | MR | Zbl
[7] A. G. Vitushkin, “On representation of functions by means of superpositions and related topics”, Enseignement Math. (2), 23:3-4 (1977), 255–320 | MR | Zbl
[8] A. N. Kolmogorov, “Otsenki minimalnogo chisla elementov $\varepsilon$-setei v razlichnykh funktsionalnykh klassakh i ikh primenenie k voprosu o predstavimosti funktsii neskolkikh peremennykh superpozitsiyami funktsii menshego chisla peremennykh”, UMN, 10:1(63) (1955), 192–194
[9] S. S. Marchenkov, “Ob odnom metode analiza superpozitsii nepreryvnykh funktsii”, Problemy kibernetiki, 37, Nauka, M., 1980, 5–17 | MR | Zbl
[10] S. S. Marchenkov, “O superpozitsiyakh nepreryvnykh funktsii, zadannykh na berovskom prostranstve”, Matem. zametki, 66:5 (1999), 696–705 | DOI | MR | Zbl
[11] S. S. Marchenkov, “O nevozmozhnosti polucheniya $(n+1)$-mestnykh nepreryvnykh funktsii iz $n$-mestnykh s pomoschyu nekotorykh nepreryvnykh operatorov”, Matem. sb., 192:6 (2001), 71–88 | DOI | MR | Zbl
[12] S. S. Marchenkov, S. I. Krivospitskii, “Superpozitsii nepreryvnykh funktsii, zadannykh na berovskom prostranstve”, Probl. peredachi inform., 45:4 (2009), 107–114 | MR | Zbl
[13] S. S. Marchenkov, Predstavlenie funktsii superpozitsiyami, KomKniga, M., 2010
[14] S. B. Gashkov, “O slozhnosti priblizhennoi realizatsii funktsionalnykh kompaktov v nekotorykh prostranstvakh i o suschestvovanii funktsii s zadannoi po poryadku slozhnostyu”, Fundament. i prikl. matem., 2:3 (1996), 675–774 | MR | Zbl
[15] S. V. Yablonskii, Vvedenie v diskretnuyu matematiku, Vysshaya shkola, M., 2003 | MR | Zbl
[16] T. Sauer, Y. Xu, “A case study in multivariate Lagrange interpolation”, Approximation Theory, Wavelets and Applications, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 454, Kluwer Acad. Publ., Dordrecht, 1995, 443–452 | MR | Zbl