Interpolation and Superpositions of Multivariate Continuous Functions
Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 566-574.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to proving the unrepresentability of multivariate continuous functions by superpositions of continuous functions of fewer variables is suggested. The approach is based on the idea of interpolating functions with the use of sufficiently sparse interpolation nodes but with relatively high accuracy. The approach is illustrated by Vitushkin's well-known results on superpositions of functions that depend on a given number of variables and have derivatives of a given order.
Keywords: multivariate function, continuous function, representation
Mots-clés : superposition, interpolation.
@article{MZM_2013_93_4_a7,
     author = {S. S. Marchenkov},
     title = {Interpolation and {Superpositions} of {Multivariate} {Continuous} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {566--574},
     publisher = {mathdoc},
     volume = {93},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a7/}
}
TY  - JOUR
AU  - S. S. Marchenkov
TI  - Interpolation and Superpositions of Multivariate Continuous Functions
JO  - Matematičeskie zametki
PY  - 2013
SP  - 566
EP  - 574
VL  - 93
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a7/
LA  - ru
ID  - MZM_2013_93_4_a7
ER  - 
%0 Journal Article
%A S. S. Marchenkov
%T Interpolation and Superpositions of Multivariate Continuous Functions
%J Matematičeskie zametki
%D 2013
%P 566-574
%V 93
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a7/
%G ru
%F MZM_2013_93_4_a7
S. S. Marchenkov. Interpolation and Superpositions of Multivariate Continuous Functions. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 566-574. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a7/

[1] A. G. Vitushkin, “K trinadtsatoi probleme Gilberta”, DAN SSSR, 95:4 (1954), 701–704 | MR | Zbl

[2] A. G. Vitushkin, O mnogomernykh variatsiyakh, Gostekhizdat, M., 1955 | MR

[3] A. N. Kolmogorov, “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh superpozitsiyami nepreryvnykh funktsii menshego chisla peremennykh”, DAN SSSR, 108:2 (1956), 179–182 | MR | Zbl

[4] A. N. Kolmogorov, “O predstavlenii nepreryvnykh funktsii neskolkikh peremennykh v vide superpozitsii nepreryvnykh funktsii odnogo peremennogo i slozheniya”, DAN SSSR, 114:5 (1957), 953–956 | MR | Zbl

[5] V. I. Arnold, “O funktsiyakh trekh peremennykh”, DAN SSSR, 114:4 (1957), 679–681 | MR | Zbl

[6] A. G. Vitushkin, G. M. Khenkin, “Lineinye superpozitsii funktsii”, UMN, 22:1(133) (1967), 77–124 | MR | Zbl

[7] A. G. Vitushkin, “On representation of functions by means of superpositions and related topics”, Enseignement Math. (2), 23:3-4 (1977), 255–320 | MR | Zbl

[8] A. N. Kolmogorov, “Otsenki minimalnogo chisla elementov $\varepsilon$-setei v razlichnykh funktsionalnykh klassakh i ikh primenenie k voprosu o predstavimosti funktsii neskolkikh peremennykh superpozitsiyami funktsii menshego chisla peremennykh”, UMN, 10:1(63) (1955), 192–194

[9] S. S. Marchenkov, “Ob odnom metode analiza superpozitsii nepreryvnykh funktsii”, Problemy kibernetiki, 37, Nauka, M., 1980, 5–17 | MR | Zbl

[10] S. S. Marchenkov, “O superpozitsiyakh nepreryvnykh funktsii, zadannykh na berovskom prostranstve”, Matem. zametki, 66:5 (1999), 696–705 | DOI | MR | Zbl

[11] S. S. Marchenkov, “O nevozmozhnosti polucheniya $(n+1)$-mestnykh nepreryvnykh funktsii iz $n$-mestnykh s pomoschyu nekotorykh nepreryvnykh operatorov”, Matem. sb., 192:6 (2001), 71–88 | DOI | MR | Zbl

[12] S. S. Marchenkov, S. I. Krivospitskii, “Superpozitsii nepreryvnykh funktsii, zadannykh na berovskom prostranstve”, Probl. peredachi inform., 45:4 (2009), 107–114 | MR | Zbl

[13] S. S. Marchenkov, Predstavlenie funktsii superpozitsiyami, KomKniga, M., 2010

[14] S. B. Gashkov, “O slozhnosti priblizhennoi realizatsii funktsionalnykh kompaktov v nekotorykh prostranstvakh i o suschestvovanii funktsii s zadannoi po poryadku slozhnostyu”, Fundament. i prikl. matem., 2:3 (1996), 675–774 | MR | Zbl

[15] S. V. Yablonskii, Vvedenie v diskretnuyu matematiku, Vysshaya shkola, M., 2003 | MR | Zbl

[16] T. Sauer, Y. Xu, “A case study in multivariate Lagrange interpolation”, Approximation Theory, Wavelets and Applications, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 454, Kluwer Acad. Publ., Dordrecht, 1995, 443–452 | MR | Zbl