On the Representation of Functions as Fourier Integrals
Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 555-565.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the representation of functions as the Fourier integral in $\mathbb R^d$ of a function belonging to the space $L_1\cap L_p$, where $0$, are obtained. The sharpness of these conditions is shown.
Keywords: Fourier integral, Euclidean space $\mathbb R^d$, the space $L_p$
Mots-clés : $0
@article{MZM_2013_93_4_a6,
     author = {Yu. S. Kolomoitsev},
     title = {On the {Representation} of {Functions} as {Fourier} {Integrals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {555--565},
     publisher = {mathdoc},
     volume = {93},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a6/}
}
TY  - JOUR
AU  - Yu. S. Kolomoitsev
TI  - On the Representation of Functions as Fourier Integrals
JO  - Matematičeskie zametki
PY  - 2013
SP  - 555
EP  - 565
VL  - 93
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a6/
LA  - ru
ID  - MZM_2013_93_4_a6
ER  - 
%0 Journal Article
%A Yu. S. Kolomoitsev
%T On the Representation of Functions as Fourier Integrals
%J Matematičeskie zametki
%D 2013
%P 555-565
%V 93
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a6/
%G ru
%F MZM_2013_93_4_a6
Yu. S. Kolomoitsev. On the Representation of Functions as Fourier Integrals. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 555-565. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a6/

[1] S. G. Samko, G. S. Kostetskaya, “Absolute integrability of Fourier integrals”, Vestn. Ros. un-ta druzhby narodov. Cer. matem., 1994, no. 1, 138–168 | Zbl

[2] E. Liflyand, R. Trigub, “Conditions for the absolute convergence of Fourier integrals”, J. Approx. Theory, 163:4 (2011), 438–459 | DOI | MR | Zbl

[3] R. M. Trigub, E. S. Bellinsky, Fourier Analysis and Appoximation of Functions, Kluwer Acad. Publ., Dordrecht, 2004 | MR | Zbl

[4] I. R. Liflyand, R. M. Trigub, “O predstavlenii funktsii v vide absolyutno skhodyaschegosya integrala Fure”, Teoriya funktsii i differentsialnye uravneniya, Sbornik statei. K 105-letiyu so dnya rozhdeniya akademika Sergeya Mikhailovicha Nikolskogo, Tr. MIAN, 269, MAIK, M., 2010, 153–166 | MR | Zbl

[5] R. M. Trigub, “O multiplikatorakh Fure i absolyutnoi skhodimosti integralov Fure radialnykh funktsii”, Ukr. matem. zhurn., 62:9 (2010), 1280–1293 | Zbl

[6] R. M. Trigub, “Multiplikatory v prostranstvakh Khardi $H_p(D^m)$ pri $p\in (0,1]$ i approksimativnye svoistva metodov summirovaniya stepennykh ryadov”, Matem. sb., 188:4 (1997), 145–160 | DOI | MR | Zbl

[7] V. I. Rukasov, K. V. Runovski, H.-J. Schmeisser, “On convergence of families of linear polynomial operators”, Funct. Approx. Comment. Math., 41:1 (2009), 41–54 | DOI | MR | Zbl

[8] R. M. Trigub, “Absolyutnaya skhodimost integralov Fure, summiruemost ryadov Fure i priblizhenie polinomami funktsii na tore”, Izv. AN SSSR. Ser. matem., 44:6 (1980), 1378–1409 | MR | Zbl

[9] O. V. Besov, “K teoreme Khermandera o multiplikatorakh Fure”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 11, Sbornik rabot, Tr. MIAN SSSR, 173, 1986, 3–13 | MR | Zbl

[10] I. I. Hirschman, Jr., “On multiplier transformations”, Duke Math. J., 26:2 (1959), 221–242 | DOI | MR | Zbl

[11] S. Wainger, Special Trigonometric Series in $k$ Dimensions, Mem. Amer. Math. Soc., 59, Amer. Math. Soc., Providence, RI, 1965 | MR | Zbl

[12] Ch. Fefferman, “Inequalities for strongly singular convolution operators”, Acta Math., 124 (1970), 9–36 | DOI | MR | Zbl

[13] A. Miyachi, “On some singular Fourier multipliers”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 28:2 (1981), 267–315 | MR | Zbl

[14] A. Miyachi, “On some Fourier multipliers for $H^p(\mathbb R^n)$”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 27:1 (1980), 157–179 | MR | Zbl

[15] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl