Asymptotics of Eigenvalues of the Two-Dimensional Dirichlet Boundary-Value Problem for the Lam\'e Operator in a Domain with a Small Hole
Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 537-548.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet boundary-value problem for the eigenvalues of the Lamé operator in a two-dimensional bounded domain with a small hole is studied. The asymptotics of the eigenvalue of this boundary-value problem is constructed and justified up to the power of the parameter defining the diameter of the hole.
Keywords: Dirichlet boundary-value problem, Lamé operator, Fredholm alternative, holomorphic function, asymptotics of eigenvalues, Bessel function.
@article{MZM_2013_93_4_a4,
     author = {D. B. Davletov},
     title = {Asymptotics of {Eigenvalues} of the {Two-Dimensional} {Dirichlet} {Boundary-Value} {Problem} for the {Lam\'e} {Operator} in a {Domain} with a {Small} {Hole}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {537--548},
     publisher = {mathdoc},
     volume = {93},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a4/}
}
TY  - JOUR
AU  - D. B. Davletov
TI  - Asymptotics of Eigenvalues of the Two-Dimensional Dirichlet Boundary-Value Problem for the Lam\'e Operator in a Domain with a Small Hole
JO  - Matematičeskie zametki
PY  - 2013
SP  - 537
EP  - 548
VL  - 93
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a4/
LA  - ru
ID  - MZM_2013_93_4_a4
ER  - 
%0 Journal Article
%A D. B. Davletov
%T Asymptotics of Eigenvalues of the Two-Dimensional Dirichlet Boundary-Value Problem for the Lam\'e Operator in a Domain with a Small Hole
%J Matematičeskie zametki
%D 2013
%P 537-548
%V 93
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a4/
%G ru
%F MZM_2013_93_4_a4
D. B. Davletov. Asymptotics of Eigenvalues of the Two-Dimensional Dirichlet Boundary-Value Problem for the Lam\'e Operator in a Domain with a Small Hole. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 537-548. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a4/

[1] A. A. Samarskii, “O vliyanii zakrepleniya na sobstvennye chastoty zamknutykh ob'emov”, DAN SSCR, 63:6 (1948), 631–634 | MR | Zbl

[2] V. G. Mazya, S. A. Nazarov, B. A. Plamenevskii, “Asimptoticheskie razlozheniya sobstvennykh chisel kraevykh zadach dlya operatora Laplasa v oblastyakh s malymi otverstiyami”, Izv. AN SSSR. Ser. matem., 48:2 (1984), 347–371 | MR | Zbl

[3] I. V. Kamotskii, S. A. Nazarov, “Spektralnye zadachi v singulyarno vozmuschennykh oblastyakh i samosopryazhennye rasshireniya differentsialnykh operatorov”, Tr. Sankt-Peterburgsk. matem. ob-va, 6, Nauchnaya kniga, Novosibirsk, 1998, 151–212 | MR

[4] D. B. Davletov, “Singulyarno vozmuschennaya kraevaya zadacha Dirikhle dlya statsionarnoi sistemy lineinoi teorii uprugosti”, Izv. vuzov. Matem., 2008, no. 12, 7–16 | MR | Zbl

[5] D. B. Davletov, “Asimptotika sobstvennykh znachenii kraevoi zadachi Dirikhle operatora Lame v trekhmernoi oblasti s maloi polostyu”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1847–1858 | MR | Zbl

[6] O. A. Oleinik, G. A. Iosifyan, A. S. Shamaev, Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, Izd-vo Mosk. un-ta, M., 1990 | MR | Zbl

[7] A. M. Ilin, Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR | Zbl

[8] V. D. Kupradze, Metody potentsiala v teorii uprugosti, Fizmatgiz, M., 1963 | MR | Zbl

[9] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR | Zbl

[10] V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, T. V. Burchuladze, Trekhmernye zadachi matematicheskoi teorii uprugosti, Tbilissk. un-t, Tbilisi, 1968 | MR | Zbl

[11] V. P. Mikhailov, Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[12] M. A. Krasnoselskii, G. M. Vainikko, P. P. Zabreiko, Ya. B. Rutitskii, V. Ya. Stetsenko, Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR | Zbl