On Global Asymptotic Stability and Stability of Saddle Solutions at Infinity
Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 624-629
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
first-order nonlinear system, global asymptotic stability, stability of saddle solutions.
@article{MZM_2013_93_4_a12,
author = {G. E. Grishanina and N. G. Inozemtseva and B. I. Sadovnikov},
title = {On {Global} {Asymptotic} {Stability} and {Stability} of {Saddle} {Solutions} at {Infinity}},
journal = {Matemati\v{c}eskie zametki},
pages = {624--629},
year = {2013},
volume = {93},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a12/}
}
TY - JOUR AU - G. E. Grishanina AU - N. G. Inozemtseva AU - B. I. Sadovnikov TI - On Global Asymptotic Stability and Stability of Saddle Solutions at Infinity JO - Matematičeskie zametki PY - 2013 SP - 624 EP - 629 VL - 93 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a12/ LA - ru ID - MZM_2013_93_4_a12 ER -
G. E. Grishanina; N. G. Inozemtseva; B. I. Sadovnikov. On Global Asymptotic Stability and Stability of Saddle Solutions at Infinity. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 624-629. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a12/
[1] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | Zbl
[2] A. V. Borisov, V. V. Kozlov, I. S. Mamaev, Nelineinaya dinam., 3:3 (2007), 255–296
[3] A. V. Borisov, V. V. Kozlov, I. S. Mamaev, Regul. Chaotic Dyn., 12:5 (2007), 531–565 | DOI | MR | Zbl
[4] E. A. Barabashin, N. N. Krasovskii, PMM, 18:3 (1954), 445–450
[5] I. G. Malkin, Teoriya ustoichivosti dvizheniya, Editorial URSS, M., 2010 | MR | Zbl
[6] N. Luzin, Matem. sb., 39:3 (1932), 6–26 | Zbl
[7] G. E. Grishanina
[8] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, M., Gostekhizdat, 1949