A Sharp Markov Brothers-Type Inequality in the Spaces~$L_\infty$ and $L_1$ on the Segment
Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 604-613.

Voir la notice de l'article provenant de la source Math-Net.Ru

The inequality between the uniform norm of the derivative of order $\ell$ of an algebraic polynomial of degree $n$ and the $L_1$-norm of the polynomial itself on a segment are studied. For all $\ell\ge(n-1)/3$, the exact constant and the extremal polynomial are written out.
Keywords: Markov brothers' inequality, trigonometric polynomial, Chebyshev polynomial
Mots-clés : algebraic polynomial, Legendre polynomial.
@article{MZM_2013_93_4_a10,
     author = {I. E. Simonov},
     title = {A {Sharp} {Markov} {Brothers-Type} {Inequality} in the {Spaces~}$L_\infty$ and $L_1$ on the {Segment}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {604--613},
     publisher = {mathdoc},
     volume = {93},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a10/}
}
TY  - JOUR
AU  - I. E. Simonov
TI  - A Sharp Markov Brothers-Type Inequality in the Spaces~$L_\infty$ and $L_1$ on the Segment
JO  - Matematičeskie zametki
PY  - 2013
SP  - 604
EP  - 613
VL  - 93
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a10/
LA  - ru
ID  - MZM_2013_93_4_a10
ER  - 
%0 Journal Article
%A I. E. Simonov
%T A Sharp Markov Brothers-Type Inequality in the Spaces~$L_\infty$ and $L_1$ on the Segment
%J Matematičeskie zametki
%D 2013
%P 604-613
%V 93
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a10/
%G ru
%F MZM_2013_93_4_a10
I. E. Simonov. A Sharp Markov Brothers-Type Inequality in the Spaces~$L_\infty$ and $L_1$ on the Segment. Matematičeskie zametki, Tome 93 (2013) no. 4, pp. 604-613. http://geodesic.mathdoc.fr/item/MZM_2013_93_4_a10/

[1] G. V. Milovanović, D. S. Mitrinović, Th. M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Sci., Singapore, 1994 | MR | Zbl

[2] Q. I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, London Math. Soc. Monogr. (N.S.), 26, Oxford Univ. Press, Oxford, 2002 | MR | Zbl

[3] V. I. Ivanov, “Nekotorye neravenstva dlya trigonometricheskikh polinomov i ikh proizvodnykh v raznykh metrikakh”, Matem. zametki, 18:4 (1975), 489–498 | MR | Zbl

[4] S. V. Konyagin, “Otsenki proizvodnykh ot mnogochlenov”, DAN SSSR, 243:5 (1978), 1116–1118 | MR | Zbl

[5] A. A. Markov, “Ob odnom voprose D. I. Mendeleeva”, Zap. Imperatorsk. AN, 62 (1889), 1–24

[6] V. A. Markov, O funktsiyakh, naimenee uklonyayuschikhsya ot nulya v dannom promezhutke, Tipografiya Imperatorskoi AN, SPb, 1892

[7] B. D. Bojanov, “An extension of the Markov inequality”, J. Approx. Theory, 35:2 (1982), 181–190 | DOI | MR | Zbl

[8] B. Bojanov, “Markov-type inequalities for polynomials and splines”, Approximation Theory, X. Abstract and Classical Analysis, Innov. Appl. Math., Vanderbilt Univ. Press, Nashville, TN, 2002, 31–90 | MR | Zbl

[9] E. Hille, G. Szegö, J. D. Tamarkin, “On some generalizations of a theorem of A. Markoff”, Duke Math. J., 3:4 (1937), 729–739 | DOI | MR | Zbl

[10] P. Dörfler, “New inequalities of Markov type”, SIAM J. Math. Anal., 18:2 (1987), 490–494 | DOI | MR | Zbl

[11] A. Kroó, “On the exact constant in the $L_2$ Markov inequality”, J. Approx. Theory, 151:2 (2008), 208–211 | DOI | MR | Zbl

[12] G. Labelle, “Concerning polynomials on the unit interval”, Proc. Amer. Math. Soc., 20 (1969), 321–326 | DOI | MR | Zbl

[13] P. L. Chebyshev, “Teoriya mekhanizmov, izvestnykh pod nazvaniem parallelogrammov”, Poln. sobr. soch.: v 5 t. T. 2. Matematicheskii analiz, Izd-vo AN SSSR, M., 1947, 23–51 | Zbl

[14] A. Korkine, G. Zolotareff, “Sur un certain minimum”, Nouv. Ann. Math. (2), 12 (1873), 337–356 | Zbl

[15] F. R. Gantmakher, Teoriya matrits, Nauka, M., 2010 | MR | Zbl

[16] O. B. Tsekhan, Matrichnyi analiz, FORUM, M., 2010

[17] Ya. L. Geronimus, “O nekotorykh ekstremalnykh zadachakh”, Izv. AN SSSR. Ser. matem., 1:2 (1937), 185–202 | Zbl

[18] Ya. L. Geronimus, “Ob odnoi ekstremalnoi zadache Chebysheva”, Izv. AN SSSR. Ser. matem., 2:4 (1938), 445–456 | Zbl