Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2013_93_3_a8, author = {Ling Liu and Bing-Liang Shen}, title = {The {Complexity} of {Crossed} {Products}}, journal = {Matemati\v{c}eskie zametki}, pages = {407--412}, publisher = {mathdoc}, volume = {93}, number = {3}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a8/} }
Ling Liu; Bing-Liang Shen. The Complexity of Crossed Products. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 407-412. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a8/
[1] J. L. Alperin, L. Evens, “Representations, resolutions, and Quillen's dimension theorem”, J. Pure Appl. Algebra, 22:1 (1981), 1–9 | DOI | MR | Zbl
[2] P. J. Webb, “The Auslander–Reiten quiver of a finite group”, Math. Z., 179:1 (1982), 97–121 | DOI | MR | Zbl
[3] D. K. Nakano, “A bound on the complexity for $G_rT$ modules”, Proc. Amer. Math. Soc., 123:2 (1995), 335–341 | MR | Zbl
[4] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math., 82, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl
[5] R. J. Blattner, M. Cohen, S. Montgomery, “Crossed product and inner actions of Hopf algebras”, Trans. Amer. Math. Soc., 298:2 (1986), 671–711 | DOI | MR | Zbl
[6] Y. Doi, M. Takeuchi, “Cleft comodule algebras for a bialgebra”, 14, no. 5, 1986, 801–817 | MR | Zbl
[7] F. Li, M.-M. Zhang, “Invariant properties of representations under cleft extensions”, Sci. China Ser. A, 50:1 (2007), 121–131 | MR | Zbl
[8] R. J. Blattner, S. Montgomery, “Crossed products and Galois extensions of Hopf algebras”, Pacific J. Math., 137:1 (1989), 37–54 | DOI | MR | Zbl