On Supplementation and Generalized Projective Modules
Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 390-400.

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete (quasi) modules form an important class in module theory, they are studied extensively by many authors. The decomposition theorem for quasidiscrete modules plays an important rule in the better understanding of such modules. In fact, every quasidiscrete module is a direct sum of hollow submodules. Here we introduce some new concepts (weak quasidiscrete, and $S_{1}$- and $S_{2}$-supplemented modules) which generalize the concept of quasidiscrete modules. We show that some of the properties of quasidiscrete modules still hold in the class of weak quasidiscrete modules. We also obtain some properties for weak quasidiscrete modules, which are similar to the properties known for quasidiscrete modules. We introduce the concept of generalized relative projectivity (relative $S$-projective modules), and use it to characterize direct sums of hollow modules. In fact, relative $S$-projectivity is an essential condition for direct sums of hollow modules to be weak quasidiscrete modules.
Keywords: projective module, discrete module, hollow submodule, supplemented submodule.
Mots-clés : quasidiscrete module
@article{MZM_2013_93_3_a6,
     author = {M. Kamal and A. Yousef},
     title = {On {Supplementation} and {Generalized} {Projective} {Modules}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {390--400},
     publisher = {mathdoc},
     volume = {93},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a6/}
}
TY  - JOUR
AU  - M. Kamal
AU  - A. Yousef
TI  - On Supplementation and Generalized Projective Modules
JO  - Matematičeskie zametki
PY  - 2013
SP  - 390
EP  - 400
VL  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a6/
LA  - ru
ID  - MZM_2013_93_3_a6
ER  - 
%0 Journal Article
%A M. Kamal
%A A. Yousef
%T On Supplementation and Generalized Projective Modules
%J Matematičeskie zametki
%D 2013
%P 390-400
%V 93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a6/
%G ru
%F MZM_2013_93_3_a6
M. Kamal; A. Yousef. On Supplementation and Generalized Projective Modules. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 390-400. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a6/

[1] S. Mohamed, S. Singh, “Generalizations of decomposition theorems known over perfect rings”, J. Austral. Math. Soc. Ser. A, 24:4 (1977), 496–510 | DOI | MR | Zbl

[2] K. Oshiro, “Semiperfect modules and quasi-semiperfect modules”, Osaka J. Math., 20:2 (1983), 337–372 | MR | Zbl

[3] S. H. Mohamed, B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Note Ser., 147, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[4] S. Mohamed, B. J. Muller, Cojective Modules, Preprint

[5] W. D. Burgess, R. Raphael, “On modules with the absolute direct summand property”, Ring Theory (Granville, OH, 1992), World Sci. Publ., River Edge, NJ,, 1993, 137–148 | MR | Zbl

[6] F. Kasch, Modules and Rings, London Math. Soc. Monogr., 17, Academic Press, London, 1982 | MR | Zbl