Regularized Trace of the Perturbed Laplace--Beltrami Operator on Two-Dimensional Manifolds with Closed Geodesics
Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 373-389

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is the determination of the regularized trace of the Laplace–Beltrami operator with potential on the manifold given by a function family of smooth almost Liouville metrics on the sphere (besides, all the geodesics of these metrics are closed and have equal length).
Keywords: Laplace–Beltrami operator, almost Liouville metric, two-dimensional manifold, geodesic, sphero-conical coordinates, metric, pseudodifferential operator, bundle of half-densities, Hamiltonian flow, Dirichlet series
Mots-clés : cotangent space.
@article{MZM_2013_93_3_a5,
     author = {T. V. Zykova},
     title = {Regularized {Trace} of the {Perturbed} {Laplace--Beltrami} {Operator} on {Two-Dimensional} {Manifolds} with {Closed} {Geodesics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {373--389},
     publisher = {mathdoc},
     volume = {93},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a5/}
}
TY  - JOUR
AU  - T. V. Zykova
TI  - Regularized Trace of the Perturbed Laplace--Beltrami Operator on Two-Dimensional Manifolds with Closed Geodesics
JO  - Matematičeskie zametki
PY  - 2013
SP  - 373
EP  - 389
VL  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a5/
LA  - ru
ID  - MZM_2013_93_3_a5
ER  - 
%0 Journal Article
%A T. V. Zykova
%T Regularized Trace of the Perturbed Laplace--Beltrami Operator on Two-Dimensional Manifolds with Closed Geodesics
%J Matematičeskie zametki
%D 2013
%P 373-389
%V 93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a5/
%G ru
%F MZM_2013_93_3_a5
T. V. Zykova. Regularized Trace of the Perturbed Laplace--Beltrami Operator on Two-Dimensional Manifolds with Closed Geodesics. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 373-389. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a5/