Regularized Trace of the Perturbed Laplace--Beltrami Operator on Two-Dimensional Manifolds with Closed Geodesics
Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 373-389.

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result of the paper is the determination of the regularized trace of the Laplace–Beltrami operator with potential on the manifold given by a function family of smooth almost Liouville metrics on the sphere (besides, all the geodesics of these metrics are closed and have equal length).
Keywords: Laplace–Beltrami operator, almost Liouville metric, two-dimensional manifold, geodesic, sphero-conical coordinates, metric, pseudodifferential operator, bundle of half-densities, Hamiltonian flow, Dirichlet series
Mots-clés : cotangent space.
@article{MZM_2013_93_3_a5,
     author = {T. V. Zykova},
     title = {Regularized {Trace} of the {Perturbed} {Laplace--Beltrami} {Operator} on {Two-Dimensional} {Manifolds} with {Closed} {Geodesics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {373--389},
     publisher = {mathdoc},
     volume = {93},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a5/}
}
TY  - JOUR
AU  - T. V. Zykova
TI  - Regularized Trace of the Perturbed Laplace--Beltrami Operator on Two-Dimensional Manifolds with Closed Geodesics
JO  - Matematičeskie zametki
PY  - 2013
SP  - 373
EP  - 389
VL  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a5/
LA  - ru
ID  - MZM_2013_93_3_a5
ER  - 
%0 Journal Article
%A T. V. Zykova
%T Regularized Trace of the Perturbed Laplace--Beltrami Operator on Two-Dimensional Manifolds with Closed Geodesics
%J Matematičeskie zametki
%D 2013
%P 373-389
%V 93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a5/
%G ru
%F MZM_2013_93_3_a5
T. V. Zykova. Regularized Trace of the Perturbed Laplace--Beltrami Operator on Two-Dimensional Manifolds with Closed Geodesics. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 373-389. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a5/

[1] J. J. Duistermaat, V. Guillemin, “The spectrum of positive elliptic operators and periodic bicharacteristics”, Invent. Math., 29:1 (1975), 39–79 | DOI | MR | Zbl

[2] A. Weinstein, “Fourier integral operators, quantization, and spectra of Riemannian manifolds”, Géométrie symplectique et physique mathématique (Aix-en-Provence, 1974), Colloq. Internat. CNRS, 237, Éditions Centre Nat. Recherche Sci., Paris, 289–298 | MR | Zbl

[3] L. Khermander, Analiz lineinykh differentsialrykh operatorov s chastnymi proizvodnymi. T. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986 ; Т. 2. Дифференциальные операторы с постоянными коэффициентами, Мир, М., 1986 ; Т. 3. Псевдодифференциальные операторы, Мир, М., 1987 ; Т. 4. Интегральные операторы Фурье, Мир, М., 1988 | MR | Zbl | MR | Zbl | MR | Zbl | MR | Zbl

[4] V. Guillemin, “Some spectral results on rank one symmetric spaces”, Adv. Math., 28:2 (1978), 129–137 | DOI | MR | Zbl

[5] V. Guillemin, “An Addendum to: Some spectral results on rank one symmetric spaces”, Adv. Math., 28:2 (1978), 138–147 | DOI | MR | Zbl

[6] V. Guillemin, “Some spectral results for the Laplace operator with potential on the $n$-sphere”, Adv. Math., 27:3 (1978), 273–286 | DOI | MR | Zbl

[7] V. Guillemin, “Band asymptotics in two dimensions”, Adv. Math., 42:3 (1981), 248–282 | DOI | MR | Zbl

[8] A. L. Besse, Mnogoobraziya s zamknutymi geodezicheskimi, Mir, M., 1980 | MR | Zbl

[9] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[10] H. Widom, “The Laplace operator with potential on the 2-sphere”, Adv. Math., 31:1 (1979), 63–66 | DOI | MR | Zbl

[11] V. A. Sadovnichii, V. V. Dubrovskii, “Klassicheskaya formula regulyarizovannogo sleda operatora Laplasa–Beltrami s nechetnym potentsialom na sfere $S^2$”, DAN SSSR, 319:1 (1991), 61–62 | MR | Zbl

[12] V. E. Podolskii, “Formula regulyarizovannogo sleda operatora Laplasa–Beltrami s nechetnym potentsialom na sfere $S^2$”, Matem. zametki, 56:1 (1994), 71–77 | MR | Zbl

[13] A. N. Bobrov, V. E. Podolskii, “Skhodimost regulyarizovannykh sledov stepeni operatora Laplasa–Beltrami s potentsialom na sfere $S^n$”, Matem. sb., 190:10 (1999), 3–16 | DOI | MR | Zbl

[14] V. E. Podol'skii, “On the summability of regularized sums of eigenvalues of the Laplace–Beltrami operator with potential on symmetric spaces of rank one”, Russian J. Math. Phys., 4:1 (1996), 123–130 | MR | Zbl

[15] A. N. Bobrov, “Regulyarizovannye sledy vysshikh poryadkov operatora Laplasa–Beltrami s potentsialom na simmetricheskikh prostranstvakh ranga 1”, Differents. uravneniya, 33:6 (1997), 800–804 | MR | Zbl

[16] A. V. Bolsinov, A. T. Fomenko, Integriruemye gamiltonovy sistemy. Geometriya, topologiya, klassifikatsiya, T. 2, Izd. dom «Udmurtskii universitet», Izhevsk, 1999 | MR | Zbl

[17] M. A. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR | Zbl

[18] R. T. Seeley, “Complex powers of an elliptic operator”, Singular Integrals, Proc. Sympos. Pure Math., 10, Amer. Math. Soc., Providence, RI, 1967, 288–307 | MR | Zbl

[19] V. Guillemin, A. Uribe, “Spectral properties of a crtain class of complex potentials”, Trans. Amer. Math. Soc., 279:2 (1983) | MR | Zbl

[20] M. Teilor, Psevdodifferentsialnye operatory, Mir, M., 1985 | MR | Zbl