Hausdorff Operators on $p$-Adic Linear Spaces and Their Properties in Hardy, $BMO$, and H\"older Spaces
Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 357-367.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sufficient conditions for the boundedness of $p$-adic matrix operators in Hardy, Hölder and $BMO$ spaces are obtained. These conditions are expressed in terms of the determinant of the matrix and its norm in a $p$-adic linear space.
Keywords: Hausdorff operator, $p$-adic linear space, Hardy space, Hölder space, the space $BMO$, $p$-adic matrix operator, Haar measure.
@article{MZM_2013_93_3_a3,
     author = {S. S. Volosivets},
     title = {Hausdorff {Operators} on $p${-Adic} {Linear} {Spaces} and {Their} {Properties} in {Hardy,} $BMO$, and {H\"older} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {357--367},
     publisher = {mathdoc},
     volume = {93},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a3/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Hausdorff Operators on $p$-Adic Linear Spaces and Their Properties in Hardy, $BMO$, and H\"older Spaces
JO  - Matematičeskie zametki
PY  - 2013
SP  - 357
EP  - 367
VL  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a3/
LA  - ru
ID  - MZM_2013_93_3_a3
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Hausdorff Operators on $p$-Adic Linear Spaces and Their Properties in Hardy, $BMO$, and H\"older Spaces
%J Matematičeskie zametki
%D 2013
%P 357-367
%V 93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a3/
%G ru
%F MZM_2013_93_3_a3
S. S. Volosivets. Hausdorff Operators on $p$-Adic Linear Spaces and Their Properties in Hardy, $BMO$, and H\"older Spaces. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 357-367. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a3/

[1] V. S. Vladimirov, I. V. Volovich. E. I. Zelenov, $p$-adicheskii analiz i matematicheskaya fizika, Nauka, M., 1994 | MR | Zbl

[2] N. Koblits, $p$-adicheskie chisla, $p$-adicheskii analiz i dzeta-funktsii, Sovremennaya matematika: vvodnye kursy, Mir, M., 1982 | MR | Zbl

[3] R. R. Coifman, G. Weiss, “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl

[4] F. John, L. Nirenberg, “On functions of bounded mean oscillation”, Comm. Pure Appl. Math., 14:3 (1961), 415–426 | DOI | MR | Zbl

[5] D. Sarason, “Functions of vanishing mean oscillation”, Trans. Amer. Math. Soc., 207 (1975), 391–405 | DOI | MR | Zbl

[6] E. Liflyand, F. Móricz, “The Hausdorff operator is bounded on the real Hardy space $H^1(\mathbb R)$”, Proc. Amer. Math. Soc., 128:5 (2000), 1391–1396 | DOI | MR | Zbl

[7] K. F. Andersen, “Boundedness of Hausdorff operator on $L^p(\mathbb R^n)$, $H^1(\mathbb R^n)$ and $\mathrm{BMO}(\mathbb R^n)$”, Acta Sci. Math. (Szeged), 69:1-2 (2003), 409–418 | MR | Zbl

[8] F. Móricz, “Multivariate Hausdorff operators on the spaces $H^1(\mathbb R^n)$ and $\mathrm{BMO}(\mathbb R^n)$”, Anal. Math., 31:1 (2005), 31–41 | DOI | MR | Zbl

[9] A. K. Lerner, E. Liflyand, “Multidimensional Hausdorff operators on the real Hardy space”, J. Aust. Math. Soc., 83:1 (2007), 79–86 | DOI | MR | Zbl

[10] E. Liflyand, “Boundedness of multidimensional Hausdorff operators on $H^1(\mathbb R^n)$”, Acta. Sci. Math. (Szeged), 74:3-4 (2008), 845–851 | MR | Zbl

[11] S. S. Volosivets, “Multidimensional Hausdorff operator on $p$-adic field”, $p$-Adic Numbers Ultrametric Anal. Appl., 2:3 (2010), 252–259 | DOI | MR | Zbl

[12] J. A. Chao, M. H. Taibleson, “Generalized conjugate systems on local fields”, Studia Math., 64:3 (1979), 213–225 | MR | Zbl

[13] S. S. Volosivets, “On $\mathbf{P}$-adic analogs of Hardy and Hardy–Littlewood operators”, East J. Approx., 11:1 (2005), 57–72 | MR | Zbl

[14] S. S. Volosivets, “On Hardy and Hardy–Littlewood transforms in classes of functions with given majorant of modulus of continuity”, Acta. Sci. Math. (Szeged), 75:1-2 (2009), 265–274 | MR | Zbl

[15] B. I. Golubov, A. V. Efimov, V. A. Skvortsov, Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR | Zbl

[16] B. I. Golubov, “Ob ogranichennosti dvoichnykh operatorov Khardi i Khardi–Littlvuda v dvoichnykh prostranstvakh $H$ i $\mathrm{BMO}$”, Anal. Math., 26:4 (2000), 287–298 | DOI | MR | Zbl