On Best Approximations by Analogs of ``Proper'' and ``Improper'' Hyperbolic Crosses
Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 466-476.

Voir la notice de l'article provenant de la source Math-Net.Ru

The exact approximation orders for the classes $H_q^\Omega$ are calculated for the case in which $\Omega(t)$ contains both power and logarithmic multipliers. For these classes, the exact orders of best approximation by analogs of “improper” hyperbolic crosses are also obtained.
Keywords: best approximation orders for the classes $H_q^\Omega$, hyperbolic cross, orthowidth, trigonometric polynomial, Nikolskii function class.
@article{MZM_2013_93_3_a14,
     author = {N. N. Pustovoitov},
     title = {On {Best} {Approximations} by {Analogs} of {``Proper''} and {``Improper''} {Hyperbolic} {Crosses}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {466--476},
     publisher = {mathdoc},
     volume = {93},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a14/}
}
TY  - JOUR
AU  - N. N. Pustovoitov
TI  - On Best Approximations by Analogs of ``Proper'' and ``Improper'' Hyperbolic Crosses
JO  - Matematičeskie zametki
PY  - 2013
SP  - 466
EP  - 476
VL  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a14/
LA  - ru
ID  - MZM_2013_93_3_a14
ER  - 
%0 Journal Article
%A N. N. Pustovoitov
%T On Best Approximations by Analogs of ``Proper'' and ``Improper'' Hyperbolic Crosses
%J Matematičeskie zametki
%D 2013
%P 466-476
%V 93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a14/
%G ru
%F MZM_2013_93_3_a14
N. N. Pustovoitov. On Best Approximations by Analogs of ``Proper'' and ``Improper'' Hyperbolic Crosses. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 466-476. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a14/

[1] V. N. Temlyakov, “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN SSSR, 178, 1986, 3–113 | MR | Zbl

[2] N. N. Pustovoitov, “Priblizhenie mnogomernykh funktsii s zadannoi mazhorantoi smeshannykh modulei nepreryvnosti”, Matem. zametki, 65:1 (1999), 107–117 | DOI | MR | Zbl

[3] S. A. Telyakovskii, “Nekotorye otsenki dlya trigonometricheskikh ryadov s kvazivypuklymi koeffitsientami”, Matem. sb., 63(105):3 (1964), 426–444 | MR | Zbl

[4] Ya. S. Bugrov, “Priblizhenie klassa funktsii s dominiruyuschei smeshannoi proizvodnoi”, Matem. sb., 64(106):3 (1964), 410–418 | MR | Zbl

[5] Ya. S. Bugrov, “Konstruktivnaya kharakteristika klassov funktsii s dominiruyuschei smeshannoi proizvodnoi”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. V, Sbornik rabot pod redaktsiei S. M. Nikolskogo, Tr. MIAN SSSR, 131, 1974, 25–32 | MR | Zbl

[6] N. S. Nikolskaya, “Priblizhenie periodicheskikh funktsii klassa $SH_{p^*}^r$ summami Fure”, Sib. matem. zhurn., 16:4 (1975), 761–780 | MR | Zbl

[7] N. N. Pustovoitov, “Ortopoperechniki nekotorykh klassov periodicheskikh funktsii dvukh peremennykh s zadannoi mazhorantoi smeshannykh modulei nepreryvnosti”, Izv. RAN. Ser. matem., 64:1 (2000), 123–144 | DOI | MR | Zbl

[8] N. N. Pustovoitov, “O priblizhenii i kharakterizatsii periodicheskikh funktsii mnogikh peremennykh, imeyuschikh mazhorantu smeshannykh modulei nepreryvnosti spetsialnogo vida”, Anal. Math., 29:3 (2003), 201–218 | DOI | MR | Zbl

[9] N. N. Pustovoitov, “Ortopoperechniki klassov mnogomernykh periodicheskikh funktsii, mazhoranta smeshannykh modulei nepreryvnosti kotorykh soderzhit kak stepennye, tak i logarifmicheskie mnozhiteli”, Anal. Math., 34:3 (2008), 187–224 | DOI | MR | Zbl