Duality Properties for $\mathrm{b}$-$\mathrm{AM}$-Compact Operators on Banach Lattices
Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 442-447.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain some necessary and some sufficient conditions on Banach lattices $E$ and $F$ such that (i) if $T\colon E\to F$ is a $\mathrm{b}$-$\mathrm{AM}$-compact operator, then $T'\colon F'\to E'$ is also $\mathrm{b}$-$\mathrm{AM}$-compact operator and (ii) if $T'\colon F'\to E'$ is $\mathrm{b}$-$\mathrm{AM}$-compact operator, then $T\colon E\to F$ is also $\mathrm{b}$-$\mathrm{AM}$-compact operator.
Keywords: Banach lattice, $\mathrm{b}$-$\mathrm{AM}$-compact operator, discrete space.
@article{MZM_2013_93_3_a11,
     author = {Na Cheng and Zi-Li Chen and Guang-Gui Chen},
     title = {Duality {Properties} for $\mathrm{b}$-$\mathrm{AM}${-Compact} {Operators} on {Banach} {Lattices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {442--447},
     publisher = {mathdoc},
     volume = {93},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a11/}
}
TY  - JOUR
AU  - Na Cheng
AU  - Zi-Li Chen
AU  - Guang-Gui Chen
TI  - Duality Properties for $\mathrm{b}$-$\mathrm{AM}$-Compact Operators on Banach Lattices
JO  - Matematičeskie zametki
PY  - 2013
SP  - 442
EP  - 447
VL  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a11/
LA  - ru
ID  - MZM_2013_93_3_a11
ER  - 
%0 Journal Article
%A Na Cheng
%A Zi-Li Chen
%A Guang-Gui Chen
%T Duality Properties for $\mathrm{b}$-$\mathrm{AM}$-Compact Operators on Banach Lattices
%J Matematičeskie zametki
%D 2013
%P 442-447
%V 93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a11/
%G ru
%F MZM_2013_93_3_a11
Na Cheng; Zi-Li Chen; Guang-Gui Chen. Duality Properties for $\mathrm{b}$-$\mathrm{AM}$-Compact Operators on Banach Lattices. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 442-447. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a11/

[1] Na Cheng, Zi-li Chen, “$\mathrm{b}$-$\mathrm{AM}$-compact operators on Banach lattice”, Chinese J. Eng. Math., 27:4 (2010), 753–756 | MR | Zbl

[2] P. Meyer-Nieberg, Banach Lattices, Universitext, Springer Verlag, Berlin, 1991 | MR | Zbl

[3] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Pure Appl. Math., 119, Academic Press, New York, 1985 | MR | Zbl

[4] C. D. Aliprantis, O. Burkinshaw, Locally Solid Riesz Spaces, Pure Appl. Math., 76, Academic Press, New York, 1978 | MR | Zbl

[5] A. W. Wickstead, “Converses for the Dodds–Fremin and Kalton–Saab theorems”, Math. Proc. Cambridge Philos. Soc., 120:1 (1996), 175–179 | DOI | MR | Zbl