Duality Properties for $\mathrm{b}$-$\mathrm{AM}$-Compact Operators on Banach Lattices
Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 442-447
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain some necessary and some sufficient conditions on Banach lattices $E$ and $F$ such that (i) if $T\colon E\to F$ is a $\mathrm{b}$-$\mathrm{AM}$-compact operator, then $T'\colon F'\to E'$ is also $\mathrm{b}$-$\mathrm{AM}$-compact operator and (ii) if $T'\colon F'\to E'$ is $\mathrm{b}$-$\mathrm{AM}$-compact operator, then $T\colon E\to F$ is also $\mathrm{b}$-$\mathrm{AM}$-compact operator.
Keywords:
Banach lattice, $\mathrm{b}$-$\mathrm{AM}$-compact operator, discrete space.
@article{MZM_2013_93_3_a11,
author = {Na Cheng and Zi-Li Chen and Guang-Gui Chen},
title = {Duality {Properties} for $\mathrm{b}$-$\mathrm{AM}${-Compact} {Operators} on {Banach} {Lattices}},
journal = {Matemati\v{c}eskie zametki},
pages = {442--447},
year = {2013},
volume = {93},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a11/}
}
TY - JOUR
AU - Na Cheng
AU - Zi-Li Chen
AU - Guang-Gui Chen
TI - Duality Properties for $\mathrm{b}$-$\mathrm{AM}$-Compact Operators on Banach Lattices
JO - Matematičeskie zametki
PY - 2013
SP - 442
EP - 447
VL - 93
IS - 3
UR - http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a11/
LA - ru
ID - MZM_2013_93_3_a11
ER -
Na Cheng; Zi-Li Chen; Guang-Gui Chen. Duality Properties for $\mathrm{b}$-$\mathrm{AM}$-Compact Operators on Banach Lattices. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 442-447. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a11/
[1] Na Cheng, Zi-li Chen, “$\mathrm{b}$-$\mathrm{AM}$-compact operators on Banach lattice”, Chinese J. Eng. Math., 27:4 (2010), 753–756 | MR | Zbl
[2] P. Meyer-Nieberg, Banach Lattices, Universitext, Springer Verlag, Berlin, 1991 | MR | Zbl
[3] C. D. Aliprantis, O. Burkinshaw, Positive Operators, Pure Appl. Math., 119, Academic Press, New York, 1985 | MR | Zbl
[4] C. D. Aliprantis, O. Burkinshaw, Locally Solid Riesz Spaces, Pure Appl. Math., 76, Academic Press, New York, 1978 | MR | Zbl
[5] A. W. Wickstead, “Converses for the Dodds–Fremin and Kalton–Saab theorems”, Math. Proc. Cambridge Philos. Soc., 120:1 (1996), 175–179 | DOI | MR | Zbl