On Analogs of Spectral Decomposition of a Quantum State
Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 323-332.

Voir la notice de l'article provenant de la source Math-Net.Ru

The set of quantum states in a Hilbert space is considered. The structure of the set of extreme points of the set of states is investigated and an arbitrary state is represented as the Pettis integral over a finitely additive measure on the set of vector states, which is a generalization of the spectral decomposition of a normal state.
Keywords: quantum state, finitely additive measure.
Mots-clés : spectral decomposition
@article{MZM_2013_93_3_a0,
     author = {G. G. Amosov and V. Zh. Sakbaev},
     title = {On {Analogs} of {Spectral} {Decomposition} of a {Quantum} {State}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--332},
     publisher = {mathdoc},
     volume = {93},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a0/}
}
TY  - JOUR
AU  - G. G. Amosov
AU  - V. Zh. Sakbaev
TI  - On Analogs of Spectral Decomposition of a Quantum State
JO  - Matematičeskie zametki
PY  - 2013
SP  - 323
EP  - 332
VL  - 93
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a0/
LA  - ru
ID  - MZM_2013_93_3_a0
ER  - 
%0 Journal Article
%A G. G. Amosov
%A V. Zh. Sakbaev
%T On Analogs of Spectral Decomposition of a Quantum State
%J Matematičeskie zametki
%D 2013
%P 323-332
%V 93
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a0/
%G ru
%F MZM_2013_93_3_a0
G. G. Amosov; V. Zh. Sakbaev. On Analogs of Spectral Decomposition of a Quantum State. Matematičeskie zametki, Tome 93 (2013) no. 3, pp. 323-332. http://geodesic.mathdoc.fr/item/MZM_2013_93_3_a0/

[1] A. N. Sherstnev, Metody bilineinykh form v nekommutativnoi teorii mery i integrala, Fizmatlit, M., 2008 | Zbl

[2] U. Bratteli, D. Robinson, Operatornye algebry i kvantovaya statisticheskaya mekhanika. $C^*$ i $W^*$-algebry. Gruppy simmetrii. Razlozhenie sostoyanii, Mir, M., 1982 | MR | Zbl

[3] R. Glauber, Kvantovaya optika i radiofizika, Mir, M., 1966

[4] M. D. Srinivas, “Collapse postulate for observables with continuous spectra”, Comm. Math. Phys., 71:2 (1980), 131–158 | DOI | MR | Zbl

[5] A. S. Kholevo, Veroyatnostnye i statisticheskie aspekty kvantovoi teorii, In-t kompyuter. issled., M.–Izhevsk, 2003 | MR | Zbl

[6] A. L. Keri, F. A. Sukochev, “Sledy Diksme i nekotorye prilozheniya v nekommutativnoi geometrii”, UMN, 61:6 (2006), 45–110 | DOI | MR | Zbl

[7] G. G. Amosov, V. Zh. Sakbaev, “Stokhasticheskie svoistva dinamiki kvantovykh sistem”, Vestn. SamGU, 8:1 (2008), 479–494

[8] V. Zh. Sakbaev, “O dinamike vyrozhdennoi kvantovoi sistemy v prostranstve funktsii, integriruemykh po konechno-additivnoi mere”, Tr. MFTI, 1:4 (2009), 126–147

[9] V. Zh. Sakbaev, “Stochastic properties of degenerated quantum systems”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 13:1 (2010), 65–85 | DOI | MR | Zbl

[10] V. Zh. Sakbaev, “O mnozhestve kvantovykh sostoyanii i ego usrednennykh dinamicheskikh preobrazovaniyakh”, Izv. vuzov. Matem., 2011, no. 10, 48–58 | MR | Zbl

[11] V. I. Bogachev, O. G. Smolyanov, Deistvitelnyi i funktsionalnyi analiz, URSS, M., 2009

[12] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 1. Obschaya teoriya, IL, M., 1962 | MR | Zbl

[13] K. Yosida, E. Hewitt, “Finitely additive measures”, Trans. Amer. Math. Soc., 72 (1952), 46–66 | DOI | MR | Zbl

[14] V. S. Varadarain, “Mery na topologicheskikh prostranstvakh”, Matem. sb., 55:1 (1961), 35–100 | MR | Zbl

[15] A. G. Chentsov, “Konechno additivnye mery i relaksatsii ekstremalnykh zadach”, UIF Nauka, Ekaterinburg, 1993

[16] R. T. Powers, “Representations of uniformly hyperfinite algebras and their associated von Neumann rings”, Ann. of Math. (2), 86:1 (1967), 138–171 | DOI | MR | Zbl

[17] L. Accardi, Y. G. Lu, I. V. Volovich, Quantum Theory and its Stochastic Limit, Springer, New York, 2002 | MR | Zbl

[18] Zh. Emkh, Algebraicheskie metody v statisticheskoi mekhanike i kvantovoi teorii polya, Mir, M., 1976 | Zbl