Spectral Problems for Variational Inequalities with Discontinuous Operators
Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 252-262.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some spectral problems for variational inequalities with discontinuous nonlinear operators are considered. The variational method is used to prove the assumption that such problems are solvable. The general results are applied to the corresponding elliptic variational inequalities with discontinuous nonlinearities.
Keywords: spectral problem, variational inequality, discontinuous nonlinearity, variational method, method of monotone operators.
@article{MZM_2013_93_2_a9,
     author = {D. K. Potapov},
     title = {Spectral {Problems} for {Variational} {Inequalities} with {Discontinuous} {Operators}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {252--262},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a9/}
}
TY  - JOUR
AU  - D. K. Potapov
TI  - Spectral Problems for Variational Inequalities with Discontinuous Operators
JO  - Matematičeskie zametki
PY  - 2013
SP  - 252
EP  - 262
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a9/
LA  - ru
ID  - MZM_2013_93_2_a9
ER  - 
%0 Journal Article
%A D. K. Potapov
%T Spectral Problems for Variational Inequalities with Discontinuous Operators
%J Matematičeskie zametki
%D 2013
%P 252-262
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a9/
%G ru
%F MZM_2013_93_2_a9
D. K. Potapov. Spectral Problems for Variational Inequalities with Discontinuous Operators. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 252-262. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a9/

[1] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[2] S. Adly, D. Goeleven, M. Théra, “Recession mappings and noncoerctive variational inequalities”, Nonlinear Anal., Theory Methods Appl., 26:9 (1996), 1573–1603 | DOI | MR | Zbl

[3] V. N. Pavlenko, “Teoremy suschestvovaniya dlya ellipticheskikh variatsionnykh neravenstv s kvazipotentsialnymi operatorami”, Differents. uravneniya, 24:8 (1988), 1397–1402 | MR | Zbl

[4] V. N. Pavlenko, “Polupravilnye resheniya ellipticheskikh variatsionnykh neravenstv s razryvnymi nelineinostyami”, Ukr. matem. zhurn., 43:2 (1991), 230–235 | MR | Zbl

[5] V N. Pavlenko, “O razreshimosti variatsionnykh neravenstv s razryvnymi polumonotonnymi operatorami”, Ukr. matem. zhurn., 45:3 (1993), 443–447 | MR | Zbl

[6] V. N. Pavlenko, E. A. Chizh, “Silno rezonansnye ellipticheskie variatsionnye neravenstva s razryvnymi nelineinostyami”, Izv. vuzov. Matem., 2005, no. 7, 49–56 | MR | Zbl

[7] V. N. Pavlenko, M. A. Pribyl, “Rezonansnye ellipticheskie variatsionnye neravenstva s razryvnymi nelineinostyami”, Differents. uravneniya, 42:1 (2006), 120–125 | MR | Zbl

[8] V. N. Pavlenko, D. K. Potapov, “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii s razryvnymi operatorami”, Sib. matem. zhurn., 42:4 (2001), 911–919 | MR | Zbl

[9] D. K. Potapov, “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami v kriticheskom sluchae”, Vestn. S.-Peterb. un-ta. Ser. 10. Prikl. matem. Inform. Prots. uprav., 2004, no. 4, 125–132

[10] D. K. Potapov, “Spectral problems for equations with discontinuous monotone operators”, J. Math. Sci. (N. Y.), 144:4 (2007), 4232–4233 | DOI | MR | Zbl

[11] D. K. Potapov, Zadachi so spektralnym parametrom i razryvnoi nelineinostyu, IBP, SPb., 2008

[12] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR | Zbl

[13] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964 | MR | Zbl

[14] M. A. Krasnoselskii, A. V. Pokrovskii, Sistemy s gisterezisom, Nauka, M., 1983 | MR | Zbl

[15] K. C. Chang, “Free boundary problems and the set-valued mappings”, J. Differential Equations, 49:1 (1983), 1–28 | DOI | MR | Zbl

[16] V. N. Pavlenko, Uravneniya i variatsionnye neravenstva s razryvnymi nelineinostyami, Dis. $\dots$ dokt. fiz.-matem. nauk, Chelyabinsk, 1995

[17] D. K. Potapov, “Ob odnoi otsenke sverkhu velichiny bifurkatsionnogo parametra v zadachakh na sobstvennye znacheniya dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Differents. uravneniya, 44:5 (2008), 715–716 | MR | Zbl

[18] D. K. Potapov, “O strukture mnozhestva sobstvennykh znachenii dlya uravnenii ellipticheskogo tipa vysokogo poryadka s razryvnymi nelineinostyami”, Differents. uravneniya, 46:1 (2010), 150–152 | MR | Zbl