Properties of Bernstein Functions of Several Complex Variables
Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 216-226.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multidimensional generalization of the class of Bernstein functions is introduced and the properties of functions belonging to this class are studied. In particular, a new proof of the integral representation of Bernstein functions of several variables is given. Examples are considered.
Keywords: Bernstein function of several variables, absolutely monotone function, integral representation, Markov process.
@article{MZM_2013_93_2_a6,
     author = {A. R. Mirotin},
     title = {Properties of {Bernstein} {Functions} of {Several} {Complex} {Variables}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {216--226},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a6/}
}
TY  - JOUR
AU  - A. R. Mirotin
TI  - Properties of Bernstein Functions of Several Complex Variables
JO  - Matematičeskie zametki
PY  - 2013
SP  - 216
EP  - 226
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a6/
LA  - ru
ID  - MZM_2013_93_2_a6
ER  - 
%0 Journal Article
%A A. R. Mirotin
%T Properties of Bernstein Functions of Several Complex Variables
%J Matematičeskie zametki
%D 2013
%P 216-226
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a6/
%G ru
%F MZM_2013_93_2_a6
A. R. Mirotin. Properties of Bernstein Functions of Several Complex Variables. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 216-226. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a6/

[1] C. Berg, J. P. R. Christensen, P. Ressel, Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Grad. Texts in Math., 100, Springer-Verlag, Berlin, 1982 | MR | Zbl

[2] V. Feller, Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 2, Mir, M., 1984 | MR | Zbl

[3] D. Applebaum, “Lévy processes – from probability to finance and quantum groups”, Notices Amer. Math. Soc., 51:11 (2004), 1336–1347 | MR | Zbl

[4] C. Berg, K. Boyadzhiev, R. deLaubenfelse, “Generation of generators of holomorphic semigroups”, J. Austral. Math. Soc. Ser. A, 55:2 (1993), 246–269 | DOI | MR | Zbl

[5] A. R. Mirotin, “Deistvie funktsii klassa Shenberga $\mathscr T$ na konuse dissipativnykh elementov banakhovoi algebry”, Matem. zametki, 61:4 (1997), 630–633 | DOI | MR | Zbl

[6] A. R. Mirotin, “Funktsii klassa Shenberga $\mathscr T$ deistvuyut v konuse dissipativnykh elementov banakhovoi algebry. II”, Matem. zametki, 64:3 (1998), 423–430 | DOI | MR | Zbl

[7] A. R. Mirotin, “Mnogomernoe $\mathscr T$-ischislenie ot generatorov $C_0$-polugrupp”, Algebra i analiz, 11:2 (1999), 142–169 | MR | Zbl

[8] N. I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, Fizmatgiz, M., 1961 | MR | Zbl

[9] N. Burbaki, Integrirovanie. Mery na lokalno kompaktnykh prostranstvakh. Prodolzhenie mery. Integrirovanie mer. Mery na otdelimykh prostranstvakh, Elementy matematiki, Nauka, M., 1977

[10] M. Markl, S. Shnider, J. Stasheff, Operads in Algebra, Topology and Physics, Math. Surveys Monogr., 96, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[11] B. V. Shabat, Vvedenie v kompleksnyi analiz. Ch. 2. Funktsii neskolkikh peremennykh, Nauka, M., 1976 | MR | Zbl

[12] A. B. Goncharov, “The classical trilogarithm, algebraic $K$-theory of fields and Dedekind zeta functions”, Bull. Amer. Math. Soc. (N.S.), 24:1 (1991), 155–162 | DOI | MR | Zbl

[13] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR | Zbl

[14] A. R. Mirotin, “Vpolne monotonnye funktsii na polugruppakh Li”, Ukr. matem. zhurn., 52:6 (2000), 841–845 | MR | Zbl