A Criterion for the Best Approximation of Constants by Simple Partial Fractions
Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 209-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the best uniform approximation of a real constant $c$ by real-valued simple partial fractions $R_n$ on a closed interval of the real axis is considered. For sufficiently small (in absolute value) $c$, $|c|\leq c_n$, it is proved that $R_n$ is a fraction of best approximation if, for the difference $R_n-c$, there exists a Chebyshev alternance of $n+1$ points on a closed interval. A criterion for best approximation in terms of alternance is stated.
Keywords: best uniform approximation of a real constant, best approximation by simple partial fractions, Chebyshev alternance
Mots-clés : interpolation.
@article{MZM_2013_93_2_a5,
     author = {M. A. Komarov},
     title = {A {Criterion} for the {Best} {Approximation} of {Constants} by {Simple} {Partial} {Fractions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {209--215},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a5/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - A Criterion for the Best Approximation of Constants by Simple Partial Fractions
JO  - Matematičeskie zametki
PY  - 2013
SP  - 209
EP  - 215
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a5/
LA  - ru
ID  - MZM_2013_93_2_a5
ER  - 
%0 Journal Article
%A M. A. Komarov
%T A Criterion for the Best Approximation of Constants by Simple Partial Fractions
%J Matematičeskie zametki
%D 2013
%P 209-215
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a5/
%G ru
%F MZM_2013_93_2_a5
M. A. Komarov. A Criterion for the Best Approximation of Constants by Simple Partial Fractions. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 209-215. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a5/

[1] V. I. Danchenko, E. N. Kondakova, “Chebyshevskii alternans pri approksimatsii konstant naiprosteishimi drobyami”, Differentsialnye uravneniya i dinamicheskie sistemy, Sbornik statei, Tr. MIAN, 270, MAIK, M., 2010, 86–96 | MR | Zbl

[2] M. A. Komarov, “K zadache o edinstvennosti naiprosteishei drobi nailuchshego priblizheniya”, Problemy matem. analiza, 56 (2011), 63–82

[3] Ya. V. Novak, Aproksimatsiini ta interpolyatsiini vlastivosti naiprostishikh drobiv, Dis. $\dots$ kand. fiz.-matem. nauk, Institut matematiki NAN Ukraïny, Kiïv, 2009

[4] E. N. Kondakova, “Interpolyatsiya naiprosteishimi drobyami”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:2 (2009), 30–37

[5] A. G. Kurosh, Kurs vysshei algebry, Fizmatlit, M., 1963 | MR | Zbl