Regularization of Boundary-Value Problems for Hyperbolic Equations
Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 202-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the stability of wave propagation in anisotropic inhomogeneous media is considered. The class of approximate solutions possessing the stability property with respect to the small deviations of the input data in the form regularizing the operators $R(\varphi,\psi,x,t,\alpha)$ is constructed. Here an important role is played by the choice of the smoothing function and by the conditions for matching the regularization parameter with the error.
Keywords: hyperbolic equation, regularization of boundary-value problems, wave propagation in anisotropic inhomogeneous media, stability property with respect to the small deviations of the input data, Fourier series, regularized solution.
@article{MZM_2013_93_2_a4,
     author = {Kh. Sh. Dzhurazoda},
     title = {Regularization of {Boundary-Value} {Problems} for {Hyperbolic} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {202--208},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a4/}
}
TY  - JOUR
AU  - Kh. Sh. Dzhurazoda
TI  - Regularization of Boundary-Value Problems for Hyperbolic Equations
JO  - Matematičeskie zametki
PY  - 2013
SP  - 202
EP  - 208
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a4/
LA  - ru
ID  - MZM_2013_93_2_a4
ER  - 
%0 Journal Article
%A Kh. Sh. Dzhurazoda
%T Regularization of Boundary-Value Problems for Hyperbolic Equations
%J Matematičeskie zametki
%D 2013
%P 202-208
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a4/
%G ru
%F MZM_2013_93_2_a4
Kh. Sh. Dzhurazoda. Regularization of Boundary-Value Problems for Hyperbolic Equations. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 202-208. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a4/

[1] V. I. Smirnov, Kurs vysshei matematiki, T. 4, 2-e izd., GITTL, M., 1951 | MR | Zbl

[2] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR | Zbl

[3] V. K. Ivanov, V. V. Vasin, V. P. Tanana, Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR | Zbl

[4] I. V. Melnikova, A. Yu. Freiberg, “O regulyarizatsii kraevoi zadachi dlya uravnenii kolebanii”, Zh. vychisl. matem. i matem. fiz., 25:5 (1985), 783–789 | MR | Zbl

[5] Kh. Sh. Dzhuraev, Razrabotka metodov resheniya nekorrektno postavlennykh zadach prikladnogo znacheniya, Avtoreferat dis. $\dots$ kand. fiz.-matem. nauk, TGU, Dushanbe, 1989

[6] Kh. Sh. Dzhuraev, “Ob odnom podkhode k probleme regulyarizatsii zadachi Koshi dlya uravneniya Eilera–Puassona–Darbu”, Differents. uravneniya, 43:5 (2007), 701–704 | MR | Zbl

[7] B. M. Levitan, I. S. Sargsyan, Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR | Zbl

[8] Kh. Sh. Dzhuraev, “O regulyarizatsii skorosti signalov v linii pri odnovremennom upravlenii”, Dokl. AN Respubliki Tadzhikistan, 52:1 (2009), 23–29

[9] Kh. Sh. Dzhuraev, “O regulyarizaii resheniya granichnykh zadach dlya uravneniya kolebaniya signalov v linii”, Tezisy dokladov nauchno-teoreticheskoi konferentsii “Problemy fiziki kondensirovannykh sred” posvyaschennoi 80-letiyu akademika A. A. Adkhamova (15 noyabrya 2008, Dushanbe), TNU, Dushanbe, 2008, 59–62