Approximation by Maps with Nonnegative Jacobian
Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 263-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of approximating continuous maps by smooth maps with nonnegative Jacobian is considered.
Keywords: approximation by maps with nonnegative Jacobian, locally one-to-one map, Brouwer degree, light map, Schoenflies' theorem.
@article{MZM_2013_93_2_a10,
     author = {D. V. Radchenko},
     title = {Approximation by {Maps} with {Nonnegative} {Jacobian}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {263--275},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a10/}
}
TY  - JOUR
AU  - D. V. Radchenko
TI  - Approximation by Maps with Nonnegative Jacobian
JO  - Matematičeskie zametki
PY  - 2013
SP  - 263
EP  - 275
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a10/
LA  - ru
ID  - MZM_2013_93_2_a10
ER  - 
%0 Journal Article
%A D. V. Radchenko
%T Approximation by Maps with Nonnegative Jacobian
%J Matematičeskie zametki
%D 2013
%P 263-275
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a10/
%G ru
%F MZM_2013_93_2_a10
D. V. Radchenko. Approximation by Maps with Nonnegative Jacobian. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 263-275. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a10/

[1] P. Franklin, N. Wiener, “Analytic approximations to topological transformations”, Trans. Amer. Math. Soc., 28:4 (1926), 762–785 | DOI | MR | Zbl

[2] D. O'Regan, Y. J. Cho, Y.-Q. Chen, Topological Degree Theory and Applications, Ser. Math. Anal. Appl., 10, Chapman Hall/CRC, Boca Raton, FL, 2006 | MR | Zbl

[3] M. Khirsh, Differentsialnaya topologiya, Mir, M., 1979 | MR | Zbl

[4] E. E. Moise, Geometric Topology in Dimensions $2$ and $3$, Grad. Texts in Math., 47, Springer-Verlag, New York, 1977 | MR | Zbl

[5] T. Bagby, L. Bos, N. Levenberg, “Multivariate simultaneous approximation”, Constr. Approx., 18:4 (2002), 569–577 | DOI | MR | Zbl

[6] G. T. Whyburn, Topological Analysis, Princeton Math. Ser., 23, Princeton Univ. Press, Princeton, NJ, 1964 | MR | Zbl

[7] M. Postnikov, Lektsii po geometrii. Semestr 4. Differentsialnaya geometriya, Nauka, M., 1988 | MR | Zbl