Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber--Schauder System
Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 172-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $b_n\downarrow0$ and $\sum_{n=1}^{\infty}({b_n}/{n})=+\infty$. In this paper, it is proved that any measurable almost everywhere finite function on $[0,1]$ can be corrected on a set of arbitrarily small measure to a continuous function $\widetilde{f}$ so that the nonzero moduli $|A_n(\widetilde{f}\mspace{4mu})|$ of the Fourier–Faber–Schauder coefficients of the corrected function are $b_n$.
Keywords: Luzin's correction theorem, Faber–Schauder system, correcting function, Faber–Schauder spectrum.
@article{MZM_2013_93_2_a1,
     author = {M. G. Grigoryan and V. G. Krotov},
     title = {Luzin's {Correction} {Theorem} and the {Coefficients} of {Fourier} {Expansions} in the {Faber--Schauder} {System}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {172--178},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a1/}
}
TY  - JOUR
AU  - M. G. Grigoryan
AU  - V. G. Krotov
TI  - Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber--Schauder System
JO  - Matematičeskie zametki
PY  - 2013
SP  - 172
EP  - 178
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a1/
LA  - ru
ID  - MZM_2013_93_2_a1
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%A V. G. Krotov
%T Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber--Schauder System
%J Matematičeskie zametki
%D 2013
%P 172-178
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a1/
%G ru
%F MZM_2013_93_2_a1
M. G. Grigoryan; V. G. Krotov. Luzin's Correction Theorem and the Coefficients of Fourier Expansions in the Faber--Schauder System. Matematičeskie zametki, Tome 93 (2013) no. 2, pp. 172-178. http://geodesic.mathdoc.fr/item/MZM_2013_93_2_a1/

[1] D. Menchoff, “Sur la représentation des fonctions mesurables par des séries trigonométriques”, Matem. sb., 9(51):3 (1941), 667–692 | MR | Zbl

[2] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[3] M. G. Grigoryan, S. L. Gogyan, “Nelineinaya approksimatsiya po sisteme Khaara i modifikatsii funktsii”, Anal. Math., 32:1 (2006), 49–80 | DOI | MR | Zbl

[4] M. G. Grigorian, “On the Fourier–Walsh coefficients”, Real Anal. Exchange, 35:1 (2010), 157–166 | MR | Zbl

[5] M. G. Grigoryan, A. A. Sargsyan, “On the coefficients of expansion of elements from $C[0,1]$ space by the Faber–Schauder system”, J. Funct. Spaces Appl., 9:2 (2011), 191–203 | DOI | MR | Zbl

[6] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl

[7] V. G. Krotov, “Predstavlenie izmerimykh funktsii ryadami po sisteme Fabera–Shaudera i universalnye ryady”, Izv. AN SSSR. Ser. matem., 41:1 (1977), 215–229 | MR | Zbl

[8] V. G. Krotov, “Ob universalnykh ryadakh po sisteme Fabera–Shaudera”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 1975, no. 4, 53–58 | MR | Zbl

[9] S. Kachmazh, G. Shteingauz, Teoriya ortogonalnykh ryadov, Fizmatgiz, M., 1958 | MR | Zbl