A Note on the Construction of Complex and Quaternionic Vector Fields on Spheres
Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 104-110
Voir la notice de l'article provenant de la source Math-Net.Ru
A relationship between real, complex, and quaternionic vector fields on spheres is given by using a relationship between the corresponding standard inner products. The number of linearly independent complex vector fields on the standard $(4n-1)$-sphere is shown to be twice the number of linearly independent quaternionic vector fields plus $d$, where $d=1$ or $3$.
Keywords:
complex vector field, quaternionic vector field, realification function, complexification function, James numbers.
@article{MZM_2013_93_1_a9,
author = {M. Obiedat},
title = {A {Note} on the {Construction} of {Complex} and {Quaternionic} {Vector} {Fields} on {Spheres}},
journal = {Matemati\v{c}eskie zametki},
pages = {104--110},
publisher = {mathdoc},
volume = {93},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a9/}
}
M. Obiedat. A Note on the Construction of Complex and Quaternionic Vector Fields on Spheres. Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 104-110. http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a9/