A Note on the Construction of Complex and Quaternionic Vector Fields on Spheres
Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 104-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

A relationship between real, complex, and quaternionic vector fields on spheres is given by using a relationship between the corresponding standard inner products. The number of linearly independent complex vector fields on the standard $(4n-1)$-sphere is shown to be twice the number of linearly independent quaternionic vector fields plus $d$, where $d=1$ or $3$.
Keywords: complex vector field, quaternionic vector field, realification function, complexification function, James numbers.
@article{MZM_2013_93_1_a9,
     author = {M. Obiedat},
     title = {A {Note} on the {Construction} of {Complex} and {Quaternionic} {Vector} {Fields} on {Spheres}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {104--110},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a9/}
}
TY  - JOUR
AU  - M. Obiedat
TI  - A Note on the Construction of Complex and Quaternionic Vector Fields on Spheres
JO  - Matematičeskie zametki
PY  - 2013
SP  - 104
EP  - 110
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a9/
LA  - ru
ID  - MZM_2013_93_1_a9
ER  - 
%0 Journal Article
%A M. Obiedat
%T A Note on the Construction of Complex and Quaternionic Vector Fields on Spheres
%J Matematičeskie zametki
%D 2013
%P 104-110
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a9/
%G ru
%F MZM_2013_93_1_a9
M. Obiedat. A Note on the Construction of Complex and Quaternionic Vector Fields on Spheres. Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 104-110. http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a9/

[1] N. Mahammad, R. Piccinini, U. Suter, Some Applications of Topological $K$-Theory, North-Holland Math. Stud., 45, North Holland Publ., Amsterdam, 1980 | MR | Zbl

[2] E. Thomas, “Vector fields on manifolds”, Bull. Amer. Math. Soc., 75 (1969), 643–683 | DOI | MR | Zbl

[3] J. F. Adams, “Vector fields on spheres”, Ann. of Math. (2), 75:3 (1962), 603–632 | DOI | MR | Zbl

[4] J. F. Adams, G. Walker, “On complex Stiefel manifolds”, Proc. Cambridge Philos. Soc., 61 (1965), 81–103 | DOI | MR | Zbl

[5] F. Sigrist, U. Suter, “Cross-sections of symplectic Stiefel manifolds”, Trans. Amer. Math. Soc., 184 (1973), 247–259 | DOI | MR | Zbl

[6] P. Zvengrowski, “Canonical vector fields on spheres”, Comment. Math. Helv., 43 (1968), 341–347 | DOI | MR | Zbl

[7] A. A. Ognikyan, “Kombinatornoe postroenie kasatelnykh vektornykh polei na sferakh”, Matem. zametki, 83:4 (2008), 590–605 | DOI | MR | Zbl

[8] T. Önder, “Equivariant cross sections of complex Stiefel manifolds”, Topology Appl., 109:1 (2001), 107–125 | DOI | MR | Zbl

[9] M. Obiedat, “Real, complex and quaternionic equivariant vector fields on spheres”, Topology Appl., 153:12 (2006), 2182–2189 | DOI | MR | Zbl

[10] I. M. James, “Cross-sections of Stiefel manifolds”, Proc. London Math. Soc. (3), 8 (1958), 536–547 | DOI | MR | Zbl

[11] J. C. Becker, “The span of spherical forms”, Amer. J. Math., 94:4 (1972), 991–1026 | DOI | MR | Zbl