A Note on the Construction of Complex and Quaternionic Vector Fields on Spheres
Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 104-110

Voir la notice de l'article provenant de la source Math-Net.Ru

A relationship between real, complex, and quaternionic vector fields on spheres is given by using a relationship between the corresponding standard inner products. The number of linearly independent complex vector fields on the standard $(4n-1)$-sphere is shown to be twice the number of linearly independent quaternionic vector fields plus $d$, where $d=1$ or $3$.
Keywords: complex vector field, quaternionic vector field, realification function, complexification function, James numbers.
@article{MZM_2013_93_1_a9,
     author = {M. Obiedat},
     title = {A {Note} on the {Construction} of {Complex} and {Quaternionic} {Vector} {Fields} on {Spheres}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {104--110},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a9/}
}
TY  - JOUR
AU  - M. Obiedat
TI  - A Note on the Construction of Complex and Quaternionic Vector Fields on Spheres
JO  - Matematičeskie zametki
PY  - 2013
SP  - 104
EP  - 110
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a9/
LA  - ru
ID  - MZM_2013_93_1_a9
ER  - 
%0 Journal Article
%A M. Obiedat
%T A Note on the Construction of Complex and Quaternionic Vector Fields on Spheres
%J Matematičeskie zametki
%D 2013
%P 104-110
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a9/
%G ru
%F MZM_2013_93_1_a9
M. Obiedat. A Note on the Construction of Complex and Quaternionic Vector Fields on Spheres. Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 104-110. http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a9/