Asymptotics of Series Arising from the Approximation of Periodic Functions by Riesz and Ces\`aro Means
Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 45-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotic expansions in powers of $\delta$ as $\delta\to+\infty$ of the series $$ \sum_{k=0}^\infty(-1)^{(\beta+1)k}\frac{Q((\delta^\alpha-(ak+b)^\alpha)_+)}{(ak+b)^{r+1}}, $$ where $\beta\in\mathbb Z$, $\alpha,a,b>0$, and $r\in\mathbb C$, while $Q$ is an algebraic polynomial satisfying the condition $Q(0)=0$, are obtained. In special cases, these series arise from the approximation of periodic differentiable functions by the Riesz and Cesàro means.
Keywords: Riesz mean, Cesàro mean, periodic differentiable function, approximation of periodic functions, Hurwitz function, Euler gamma function
Mots-clés : algebraic polynomial, Bernoulli spline, Euler spline, Bernoulli polynomial.
@article{MZM_2013_93_1_a3,
     author = {V. P. Zastavnyi},
     title = {Asymptotics of {Series} {Arising} from the {Approximation} of {Periodic} {Functions} by {Riesz} and {Ces\`aro} {Means}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {45--55},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a3/}
}
TY  - JOUR
AU  - V. P. Zastavnyi
TI  - Asymptotics of Series Arising from the Approximation of Periodic Functions by Riesz and Ces\`aro Means
JO  - Matematičeskie zametki
PY  - 2013
SP  - 45
EP  - 55
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a3/
LA  - ru
ID  - MZM_2013_93_1_a3
ER  - 
%0 Journal Article
%A V. P. Zastavnyi
%T Asymptotics of Series Arising from the Approximation of Periodic Functions by Riesz and Ces\`aro Means
%J Matematičeskie zametki
%D 2013
%P 45-55
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a3/
%G ru
%F MZM_2013_93_1_a3
V. P. Zastavnyi. Asymptotics of Series Arising from the Approximation of Periodic Functions by Riesz and Ces\`aro Means. Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 45-55. http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a3/

[1] B. Nagy, “Függvények megközelitése Fourier-sorok számtani közepeivel”, Math. Fiz. Lapok, 49 (1942), 123–138 | MR | Zbl

[2] B. Nagy, “Approximation der Funktionen durch die arithmetischen Mittel ihrer Fourierschen Reihen”, Acta Univ. Szeged. Sect. Sci. Math, 11 (1946), 71–84 | MR | Zbl

[3] S. A. Telyakovskii, “O priblizhenii funktsii, udovletvoryayuschikh usloviyu Lipshitsa, summami Feiera”, Ukr. matem. zhurn., 21:3 (1969), 334–343 | Zbl

[4] V. A. Baskakov, S. A. Telyakovskii, “O priblizhenii differentsiruemykh funktsii summami Feiera”, Matem. zametki, 32:2 (1982), 129–140 | MR | Zbl

[5] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge Math. Lib., Cambridge Univ. Press, Cambridge, 1927 | MR | Zbl

[6] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1973 | MR | Zbl

[7] A. O. Gelfond, Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR

[8] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR | Zbl

[9] R. Edvards, Ryady Fure v sovremennom izlozhenii, T. 1, Mir, M., 1985 | MR | Zbl

[10] N. P. Korneichuk, Ekstremalnye zadachi teorii priblizheniya, Nauka, M., 1976 | MR

[11] V. P. Zastavnyi, “Tochnaya otsenka priblizheniya nekotorykh klassov differentsiruemykh funktsii svertochnymi operatorami”, Ukr. matem. visnik, 7:3 (2010), 409–433 | MR

[12] V. P. Zastavnyi, Exact Estimation of an Approximation of Some Classes of Differentiable Functions by Convolution Operators, arXiv: math.CA/1003.4973

[13] S. M. Nikolskii, “Priblizhenie funktsii trigonometricheskimi polinomami v srednem”, Izv. AN SSSR. Ser. matem., 10:3 (1946), 207–256 | MR | Zbl

[14] V. P. Zastavnyi, “Teorema Nikolskogo dlya yader, udovletvoryayuschikh bolee obschemu usloviyu, chem $A^*_n$”, Tr. In-ta prikl. matem. i mekh. NAN Ukrainy, 20 (2010), 75–85 | Zbl

[15] S. A. Telyakovskii, “O priblizhenii funktsii srednimi Chezaro vtorogo poryadka”, Anal. Math., 8:4 (1982), 305–319 | DOI | MR | Zbl

[16] L. P. Falaleev, “K 75-letiyu professora S. A. Telyakovskogo. O metodakh Chezaro i Rissa”, Matem. zhurn., 7:4 (2007), 82–56, Almaty