On the Continuity of the Sharp Constant in the Jackson--Stechkin Inequality in the Space~$L^2$
Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 13-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the continuity of the sharp constant $K(T,X)$ with respect to the set $T$ in the Jackson–Stechkin inequality $$ E(f,L)\le K(T,X)\omega(f,T,X), $$ where $E(f,L)$ is the best approximation of the function $f\in X$ by elements of the subspace $L\subset X$, and $\omega$ is a modulus of continuity, in the case where the space $L^2(\mathbb T^d,\mathbb C)$ is taken for $X$ and the subspace of functions $g\in L^2(\mathbb T^d,\mathbb C)$, for $L$. In particular, it is proved that the sharp constant in the Jackson–Stechkin inequality is continuous in the case where $L$ is the space of trigonometric polynomials of $n$th order and the modulus of continuity $\omega$ is the classical modulus of continuity of $r$th order.
Keywords: approximation of a function, Jackson–Stechkin inequality, trigonometric polynomial, the space $L^2$, Tietze–Urysohn theorem, modulus of continuity, extremal function.
@article{MZM_2013_93_1_a1,
     author = {V. S. Balaganskii},
     title = {On the {Continuity} of the {Sharp} {Constant} in the {Jackson--Stechkin} {Inequality} in the {Space~}$L^2$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {13--28},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a1/}
}
TY  - JOUR
AU  - V. S. Balaganskii
TI  - On the Continuity of the Sharp Constant in the Jackson--Stechkin Inequality in the Space~$L^2$
JO  - Matematičeskie zametki
PY  - 2013
SP  - 13
EP  - 28
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a1/
LA  - ru
ID  - MZM_2013_93_1_a1
ER  - 
%0 Journal Article
%A V. S. Balaganskii
%T On the Continuity of the Sharp Constant in the Jackson--Stechkin Inequality in the Space~$L^2$
%J Matematičeskie zametki
%D 2013
%P 13-28
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a1/
%G ru
%F MZM_2013_93_1_a1
V. S. Balaganskii. On the Continuity of the Sharp Constant in the Jackson--Stechkin Inequality in the Space~$L^2$. Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 13-28. http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a1/

[1] A. I. Kozko, A. V. Rozhdestvenskii, “O neravenstve Dzheksona v $L_2$ s obobschennym modulem nepreryvnosti”, Matem. sb., 195:8 (2004), 3–46 | DOI | MR | Zbl

[2] A. I. Kozko, A,V. Rozhdestvenskii, “O neravenstve Dzheksona s obobschennym modulem nepreryvnosti”, Matem. zametki, 73:5 (2003), 783–788 | DOI | MR | Zbl

[3] N. I. Chernykh, “O neravenstve Dzheksona v $L_2$”, Priblizhenie funktsii v srednem, Sbornik rabot, Tr. MIAN SSSR, 88, 1967, 71–74 | MR | Zbl

[4] V. V. Arestov, N. I. Chernykh, “On the $L_2$-approximation of periodic functions by trigonometric polynomials”, Approximation and Functions Spaces, North-Holland, Amsterdam, 1981, 25–43 | MR | Zbl

[5] N. I. Chernykh, “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522 | MR | Zbl

[6] A. G. Babenko, “O neravenstve Dzheksona–Stechkina dlya nailuchshikh $L^2$-priblizhenii funktsii trigonometricheskimi polinomami”, Teoriya priblizhenii. Asimptoticheskie razlozheniya, Sbornik statei, Tr. IMM UrO RAN, 7, no. 1, 2001, 30–46 | MR | Zbl

[7] S. N. Vasilev, “Neravenstvo Dzheksona–Stechkina v $L_2[-\pi,\pi]$”, Teoriya priblizhenii. Asimptoticheskie razlozheniya, Sbornik statei, Tr. IMM UrO RAN, 7, no. 1, 2001, 75–84 | MR | Zbl

[8] V. V. Arestov, A. G. Babenko, “Continuity of the best constant in the Jackson inequality in $L^2$ with respect to argument of modulus of continuity”, Approximation Theory, DARBA, Sofia, 2002, 13–23 | MR | Zbl

[9] A. Babenko, “Prostranstvo $L^2$ na otrezke s vesom Yakobi, nepreryvnaya zavisimost konstanty Dzheksona ot argumenta modulya nepreryvnosti”, Priblizhenie funktsii. Teoreticheskie i prikladnye aspekty, Sbornik statei, MIET, M., 2003, 58–68

[10] S. N. Vasilev, Approksimatsiya funktsii trigonometricheskimi polinomami v $L^2$ i fraktalnymi funktsiyami v $C$, Dis. $\dots$ kand. fiz-matem. nauk, Ekaterinburg, 2002

[11] E. E. Berdysheva, “Optimalnoe mnozhestvo modulya nepreryvnosti v tochnom neravenstve Dzheksona v prostranstve $L_2$”, Matem. zametki, 76:5 (2004), 666–674 | DOI | MR | Zbl

[12] V. V. Arestov, V. Yu. Popov, “Neravenstva Dzheksona na sfere v $L_2$”, Izv. vuzov. Matem., 1995, no. 8, 13–20 | MR | Zbl

[13] A. Babenko, “Vzaimosvyaz tochnogo neravenstva Dzheksona v $L^2$ s zadachei Delsarta”, Algoritmicheskii analiz neustoichivykh zadach, Tezisy dokladov Vserossiiskoi konferentsii, Ekaterinburg, 2004, 12–13

[14] R. A. Aleksandryan, E. A. Mizarkhanyan, Obschaya topologiya, Vysshaya shkola, M., 1979 | Zbl

[15] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 1. Obschaya teoriya, IL, M., 1962 | MR | Zbl

[16] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Grundlehren Math. Wiss., 171, Springer-Verlag, Berlin, 1970 | MR | Zbl