On the Continuity of the Sharp Constant in the Jackson--Stechkin Inequality in the Space~$L^2$
Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 13-28
Voir la notice de l'article provenant de la source Math-Net.Ru
This paper deals with the continuity of the sharp constant $K(T,X)$ with respect to the set $T$ in the Jackson–Stechkin inequality
$$
E(f,L)\le K(T,X)\omega(f,T,X),
$$
where $E(f,L)$ is the best approximation of the function $f\in X$ by elements of the subspace $L\subset X$, and $\omega$ is a modulus of continuity, in the case where the space $L^2(\mathbb T^d,\mathbb C)$ is taken for $X$ and the subspace of functions $g\in L^2(\mathbb T^d,\mathbb C)$, for $L$. In particular, it is proved that the sharp constant in the Jackson–Stechkin inequality is continuous in the case where $L$ is the space of trigonometric polynomials of $n$th order and the modulus of continuity $\omega$ is the classical modulus of continuity of $r$th order.
Keywords:
approximation of a function, Jackson–Stechkin inequality, trigonometric polynomial, the space $L^2$, Tietze–Urysohn theorem, modulus of continuity, extremal function.
@article{MZM_2013_93_1_a1,
author = {V. S. Balaganskii},
title = {On the {Continuity} of the {Sharp} {Constant} in the {Jackson--Stechkin} {Inequality} in the {Space~}$L^2$},
journal = {Matemati\v{c}eskie zametki},
pages = {13--28},
publisher = {mathdoc},
volume = {93},
number = {1},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a1/}
}
TY - JOUR AU - V. S. Balaganskii TI - On the Continuity of the Sharp Constant in the Jackson--Stechkin Inequality in the Space~$L^2$ JO - Matematičeskie zametki PY - 2013 SP - 13 EP - 28 VL - 93 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a1/ LA - ru ID - MZM_2013_93_1_a1 ER -
V. S. Balaganskii. On the Continuity of the Sharp Constant in the Jackson--Stechkin Inequality in the Space~$L^2$. Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 13-28. http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a1/