Uniqueness of Positive Radially Symmetric Solutions of the Dirichlet Problem for a Nonlinear Elliptic System of Second Order
Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 3-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence and uniqueness of positive radially symmetric solutions of the Dirichlet problem for a nonlinear elliptic system of second order. A numerical method for constructing such solutions is also given.
Keywords: nonlinear elliptic system of second order, radially symmetric function, Dirichlet problem, Cauchy problem, test function, blow-up of global solutions.
@article{MZM_2013_93_1_a0,
     author = {E. I. Abduragimov},
     title = {Uniqueness of {Positive} {Radially} {Symmetric} {Solutions} of the {Dirichlet} {Problem} for a {Nonlinear} {Elliptic} {System} of {Second} {Order}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--12},
     publisher = {mathdoc},
     volume = {93},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a0/}
}
TY  - JOUR
AU  - E. I. Abduragimov
TI  - Uniqueness of Positive Radially Symmetric Solutions of the Dirichlet Problem for a Nonlinear Elliptic System of Second Order
JO  - Matematičeskie zametki
PY  - 2013
SP  - 3
EP  - 12
VL  - 93
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a0/
LA  - ru
ID  - MZM_2013_93_1_a0
ER  - 
%0 Journal Article
%A E. I. Abduragimov
%T Uniqueness of Positive Radially Symmetric Solutions of the Dirichlet Problem for a Nonlinear Elliptic System of Second Order
%J Matematičeskie zametki
%D 2013
%P 3-12
%V 93
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a0/
%G ru
%F MZM_2013_93_1_a0
E. I. Abduragimov. Uniqueness of Positive Radially Symmetric Solutions of the Dirichlet Problem for a Nonlinear Elliptic System of Second Order. Matematičeskie zametki, Tome 93 (2013) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/MZM_2013_93_1_a0/

[1] E. Mitidieri, S. I. Pokhozhaev, “Apriornye otsenki i otsutstvie reshenii nelineinykh uravnenii i neravenstv v chastnykh proizvodnykh”, Tr. MIAN, 234, Nauka, M., 2001, 3–383 | MR | Zbl

[2] S. I. Pokhozhaev, “Ob odnoi zadache L. V. Ovsyannikova”, Zh. prikl. matem. i tekhn. fiz., 1989, no. 2, 5–10 | MR

[3] E. I. Galakhov, “Polozhitelnye resheniya kvazilineinogo ellipticheskogo uravneniya”, Matem. zametki, 78:2 (2005), 202–211 | DOI | MR | Zbl

[4] K.-S. Cheng, J.-T. Lin, “On the elliptic equations $\delta u=K(x)u^{\alpha}$ and $\delta u=K(x)e^{2u}$”, Trans. Amer. Math. Soc., 304:2 (1987), 639–668 | MR | Zbl

[5] B. Gidas, J. Spruck, “Global and local behavior of positive solutions of nonlinear elliptic equations”, Comm. Pure Appl. Math., 34:4 (1981), 525–598 | DOI | MR | Zbl

[6] Kh. Zou, “Apriornye otsenki, suschestvovanie i nesuschestvovanie dlya kooperativnykh kvazilineinykh ellipticheskikh sistem”, Matem. sb., 199:4 (2008), 83–106 | DOI | MR | Zbl

[7] E. N. Dancer, J. Shi, “Uniqueness and nonexistence of positive solutions to semipositone problems”, Bull. London Math. Soc., 38:6 (2006), 1033–1044 | MR | Zbl

[8] N. Kawano, J. Satsuma, S. Yotsutani, “On the positive solutions of an Emden-type elliptic equation”, Proc. Japan Acad. Ser. A Math. Sci., 61:6 (1985), 186–189 | MR | Zbl

[9] J. Jiang, “On radially symmetric solutions to singular nonlinear Dirichlet problems”, Nonlinear Anal.: Theory, Methods Appl., 24:2 (1995), 159–163 | DOI | MR | Zbl

[10] E. I. Abduragimov, “O edinstvennosti polozhitelnogo radialno-simmetrichnogo resheniya v share zadachi Dirikhle dlya odnogo nelineinogo differentsialnogo uravneniya vtorogo poryadka”, Izv. vuzov. Matem., 2008, no. 12, 3–6 | MR | Zbl

[11] E. I. Abduragimov, “O polozhitelnom radialno-simmetricheskom reshenii zadachi Dirikhle dlya odnogo nelineinogo uravneniya i chislennom metode ego polucheniya”, Izv. vuzov. Matem., 1997, no. 5, 3–6 | MR | Zbl

[12] Ts. Na, Vychislitelnye metody resheniya prikladnykh granichnykh zadach, M., 1982 | MR | Zbl