New Uniqueness Conditions for the Classical Moment Problem
Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 893-903.

Voir la notice de l'article provenant de la source Math-Net.Ru

New conditions for the well-posedness of the Hamburger and Stieltjes power moment problems are proposed. The proposed conditions are closely related in form and by the simplicity of their application to the Cramer condition, and by their accuracy and field of application to the Carleman conditions. The results are obtained by using ideas from the theory of extrapolation of spaces and operators that was constructed by Jawerth and Milman in the 1980s.
Keywords: power moment problem, uniqueness conditions for the moment problem due to Carleman, conditions for the well-posedness of the moment problem, due to Cramer and Krein, extrapolation of spaces and operators, Orlicz space.
Mots-clés : Marcinkiewicz space
@article{MZM_2012_92_6_a9,
     author = {K. V. Lykov},
     title = {New {Uniqueness} {Conditions} for the {Classical} {Moment} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {893--903},
     publisher = {mathdoc},
     volume = {92},
     number = {6},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a9/}
}
TY  - JOUR
AU  - K. V. Lykov
TI  - New Uniqueness Conditions for the Classical Moment Problem
JO  - Matematičeskie zametki
PY  - 2012
SP  - 893
EP  - 903
VL  - 92
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a9/
LA  - ru
ID  - MZM_2012_92_6_a9
ER  - 
%0 Journal Article
%A K. V. Lykov
%T New Uniqueness Conditions for the Classical Moment Problem
%J Matematičeskie zametki
%D 2012
%P 893-903
%V 92
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a9/
%G ru
%F MZM_2012_92_6_a9
K. V. Lykov. New Uniqueness Conditions for the Classical Moment Problem. Matematičeskie zametki, Tome 92 (2012) no. 6, pp. 893-903. http://geodesic.mathdoc.fr/item/MZM_2012_92_6_a9/

[1] A. Zigmund, Trigonometricheskie ryady, Mir, M., 1965 | MR | Zbl

[2] S. Yano, “Notes on Fourier Analysis. (XXIX): An Extrapolation Theorem”, J. Math. Soc. Japan, 3:2 (1951), 296–305 | DOI | MR | Zbl

[3] B. Jawerth, M. Milman, “Extrapolation spaces with applications”, Mem. Amer. Math. Soc., 89, no. 440, Amer. Math. Soc., Providence, RI, 1991 | MR

[4] B. Jawerth, M. Milman, “New results and applications of extrapolation theory”, Interpolation Spaces and Related Topics, Israel Math. Conf. Proc, 5, Bar-Ilan Univ., Ramat Gan, 1992, 81–105 | MR | Zbl

[5] S. V. Astashkin, K. V. Lykov, “Extrapolation description of rearrangement invariant spaces and related problems”, Banach and Function Spaces III, Proceedings of the Third International Symposium on Banach and Function Spaces (Kitakyushu, Japan, 2009), eds. M. Kato, L. Maligranda, T. Suzuki, Yokohama Publ., 2011, 1–52

[6] K. V. Lykov, “Nekotorye zamechaniya k probleme momentov i ee svyazi s teoriei ekstrapolyatsii prostranstv”, Matem. zametki, 91:1 (2012), 79–92 | DOI

[7] I. Stoyanov, Kontrprimery v teorii veroyatnostei, Faktorial, M., 1999 | MR | Zbl

[8] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[9] Ya. B. Rutitskii, “O nekotorykh klassakh izmerimykh funktsii”, UMN, 20:4 (1965), 205–208

[10] S. V. Astashkin, K. V. Lykov, “Ekstrapolyatsionnoe opisanie prostranstv Lorentsa i Martsinkevicha, “blizkikh” k $L_\infty$”, Sib. matem. zhurn., 47:5 (2006), 974–992 | MR | Zbl